Online Altitude Control and Scheduling Policy for Minimizing AoI in UAV-assisted IoT Wireless Networks

计算机科学 马尔可夫决策过程 Lyapunov优化 调度(生产过程) 强化学习 计算机网络 基站 在线算法 最优化问题 上传 无线 信道状态信息 软件部署 无线网络 实时计算 马尔可夫过程 分布式计算 数学优化 电信 人工智能 Lyapunov重新设计 李雅普诺夫指数 统计 数学 算法 混乱的 程序设计语言 操作系统
作者
Moataz Samir,Chadi Assi,Sanaa Sharafeddine,Ali Ghrayeb
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:: 1-1 被引量:92
标识
DOI:10.1109/tmc.2020.3042925
摘要

This article considers unmanned aerial vehicle (UAV) assisted Internet of Things (IoT) networks, where low resource IoT devices periodically sample a stochastic process and need to upload more recent information to a Base Station (BS). Among the myriad of applications, there is a need for timely delivery of data (for example, status-updates) before the data becomes outdated and loses its value. Since transmission capabilities of IoT devices are limited, it may not always be feasible to transmit over one hop transmission to the BS. To address this challenge, UAVs with virtual queues are deployed as middle layer between IoT devices and the BS to relay recent information over unreliable channels. In the absence of channel conditions, the optimal online scheduling policy is investigated as well as dynamic UAV altitude control that maintains a fresh status of information at the BS. The objective of this paper is to minimize the Expected Weighted Sum Age of Information (EWSA) for IoT devices. First, the problem is formulated as an optimization problem that is however generally hard to solve. Second, an online model free Deep Reinforcement Learning (DRL) is proposed, where the deployed UAV obtains instantaneous channel state information (CSI) in real time along with any adjustment to its deployment altitude. Third, we formulate the online problem as a Markov Decision Process (MDP) and Proximal Policy Optimization (PPO) algorithm, which is a highly stable state-of-the-art DRL algorithm, is leveraged to solve the formulated problem. Finally, extensive simulations are conducted to verify findings and comprehensive comparisons with other baseline approaches are provided to demonstrate the effectiveness of the proposed design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
曦小蕊完成签到 ,获得积分10
1秒前
2秒前
科研通AI2S应助钱念波采纳,获得10
3秒前
科研通AI5应助小殷采纳,获得10
3秒前
科研通AI5应助小殷采纳,获得10
3秒前
4秒前
俊逸成危发布了新的文献求助10
4秒前
新八发布了新的文献求助10
4秒前
4秒前
情怀应助晓山青采纳,获得10
5秒前
6秒前
浮游应助衫青采纳,获得10
6秒前
韦一手发布了新的文献求助10
7秒前
Ting发布了新的文献求助10
7秒前
英姑应助kk_yang采纳,获得10
8秒前
9秒前
9秒前
聪慧的三问完成签到,获得积分10
9秒前
Akim应助负责的煎饼采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
Yuri完成签到,获得积分10
12秒前
14秒前
石头发布了新的文献求助10
14秒前
Lake发布了新的文献求助10
15秒前
15秒前
彭岩完成签到,获得积分10
16秒前
曾雨晴发布了新的文献求助10
16秒前
李健应助旺阿旺采纳,获得10
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
一道精致的灰完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950591
求助须知:如何正确求助?哪些是违规求助? 4213415
关于积分的说明 13103805
捐赠科研通 3995216
什么是DOI,文献DOI怎么找? 2186825
邀请新用户注册赠送积分活动 1202071
关于科研通互助平台的介绍 1115355