亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Object-based island hierarchical land cover classification using unmanned aerial vehicle multitype data

土地覆盖 遥感 多光谱图像 激光雷达 测距 计算机科学 随机森林 上下文图像分类 人工智能 模式识别(心理学) 土地利用 地理 电信 图像(数学) 工程类 土木工程
作者
Hao Liu,Jie Li,Qiuhua Tang,Xinghua Zhou,Jiayuan Liu,Shuochong Shi,Bingzhi Huang,Wenxue Xu,Yanguang Fu
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:14 (03) 被引量:1
标识
DOI:10.1117/1.jrs.14.034514
摘要

The unmanned aerial vehicle (UAV) is an emerging technology applied recently in land cover classification, owing to its ability to acquire very high-resolution spatial data, that has provided an effective means for detailed land cover mapping, especially for a small island area. Selecting suitable UAV-acquired data and exploring the combined use of UAV multitype data are of significance for island mapping. Nine classification models were established through a fusion method of visible, multispectral, and light detection and ranging (LIDAR) data acquired by UAVs. A two-level hierarchical land cover classification (level 1 and level 2) of the Donkey Island in China was performed using geographic object-based image analysis with random forest classifier. We investigated the performance of land cover classification models containing different sets of features (spectral, height, intensity, and shape features extracted from UAV data) and evaluated the importance of various features. The results demonstrate that the overall accuracy (OA) of the models generally increase with decreasing detail and the amount of information entering the classification process. The OA achieved range from 82.08% to 92.54% and 74.12% to 85.08% across the nine models for level 1 and level 2, respectively. The best result was achieved with a model combining all features based on multispectral and LIDAR data. Height and intensity information input significantly affect the quality of classification models positively, with height apparently more significant than LIDAR information. When comparing different features, spectral features prominently assist in discriminating land cover classes. The importance of height and intensity features to classification accuracy varies for the classification models, showing greater importance in models based on visible data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助宋佳佳采纳,获得10
刚刚
李爱国应助Ferry采纳,获得10
5秒前
xiaoyi完成签到 ,获得积分10
6秒前
nhzz2023完成签到 ,获得积分0
10秒前
hqy完成签到,获得积分10
15秒前
15秒前
熊奎懿关注了科研通微信公众号
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
27秒前
赘婿应助科研进化中采纳,获得10
31秒前
32秒前
西安浴日光能赵炜完成签到,获得积分10
32秒前
熊奎懿发布了新的文献求助10
36秒前
37秒前
啦啦啦蛤蛤蛤完成签到 ,获得积分10
40秒前
香蕉觅云应助Shen采纳,获得10
41秒前
成就的笑南完成签到 ,获得积分10
49秒前
Ferry发布了新的文献求助10
49秒前
熊奎懿完成签到,获得积分10
56秒前
1分钟前
hqy发布了新的文献求助10
1分钟前
QQQQ完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
深情安青应助喜洋羊采纳,获得10
2分钟前
ok发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ok完成签到,获得积分10
2分钟前
Shen发布了新的文献求助10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
852应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
farewell完成签到 ,获得积分10
2分钟前
太极完成签到 ,获得积分10
2分钟前
王令发布了新的文献求助10
2分钟前
2分钟前
Zhang完成签到,获得积分10
3分钟前
LSH970829发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528959
求助须知:如何正确求助?哪些是违规求助? 4618248
关于积分的说明 14562348
捐赠科研通 4557157
什么是DOI,文献DOI怎么找? 2497377
邀请新用户注册赠送积分活动 1477609
关于科研通互助平台的介绍 1448909