亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts

肌成纤维细胞 细胞外基质 细胞生物学 转化生长因子 成纤维细胞 转化生长因子β 纤维化 心脏纤维化 生物 细胞外 细胞分化 免疫学 病理 细胞培养 医学 生物化学 遗传学 基因
作者
Nathan Cho,Shadi E Razipour,Megan L. McCain
出处
期刊:Experimental Biology and Medicine [SAGE Publishing]
卷期号:243 (7): 601-612 被引量:56
标识
DOI:10.1177/1535370218761628
摘要

Cardiac fibroblasts and their activated derivatives, myofibroblasts, play a critical role in wound healing after myocardial injury and often contribute to long-term pathological outcomes, such as excessive fibrosis. Thus, defining the microenvironmental factors that regulate the phenotype of cardiac fibroblasts and myofibroblasts could lead to new therapeutic strategies. Both chemical and biomechanical cues have previously been shown to induce myofibroblast differentiation in many organs and species. For example, transforming growth factor beta 1, a cytokine secreted by neutrophils, and rigid extracellular matrix environments have both been shown to promote differentiation. However, the relative contributions of transforming growth factor beta 1 and extracellular matrix rigidity, two hallmark cues in many pathological myocardial microenvironments, to the phenotype of human cardiac fibroblasts are unclear. We hypothesized that transforming growth factor beta 1 and rigid extracellular matrix environments would potentially have a synergistic effect on the differentiation of human cardiac fibroblasts to myofibroblasts. To test this, we seeded primary human adult cardiac fibroblasts onto coverslips coated with polydimethylsiloxane of various elastic moduli, introduced transforming growth factor beta 1, and longitudinally quantified cell phenotype by measuring expression of α-smooth muscle actin, the most robust indicator of myofibroblasts. Our data indicate that, although extracellular matrix rigidity influenced differentiation after one day of transforming growth factor beta 1 treatment, ultimately transforming growth factor beta 1 superseded extracellular matrix rigidity as the primary regulator of myofibroblast differentiation. We also measured expression of POSTN, FAP, and FSP1, proposed secondary indicators of fibroblast/myofibroblast phenotypes. Although these genes partially trended with α-smooth muscle actin expression, they were relatively inconsistent. Finally, we demonstrated that activated myofibroblasts incompletely revert to a fibroblast phenotype after they are re-plated onto new surfaces without transforming growth factor beta 1, suggesting differentiation is partially reversible. Our results provide new insights into how microenvironmental cues affect human cardiac fibroblast differentiation in the context of myocardial pathology, which is important for identifying effective therapeutic targets and dictating supporting cell phenotypes for engineered human cardiac disease models. Impact statement Heart disease is the leading cause of death worldwide. Many forms of heart disease are associated with fibrosis, which increases extracellular matrix (ECM) rigidity and compromises cardiac output. Fibrotic tissue is synthesized primarily by myofibroblasts differentiated from fibroblasts. Thus, defining the cues that regulate myofibroblast differentiation is important for understanding the mechanisms of fibrosis. However, previous studies have focused on non-human cardiac fibroblasts and have not tested combinations of chemical and mechanical cues. We tested the effects of TGF-β1, a cytokine secreted by immune cells after injury, and ECM rigidity on the differentiation of human cardiac fibroblasts to myofibroblasts. Our results indicate that differentiation is initially influenced by ECM rigidity, but is ultimately superseded by TGF-β1. This suggests that targeting TGF-β signaling pathways in cardiac fibroblasts may have therapeutic potential for attenuating fibrosis, even in rigid microenvironments. Additionally, our approach can be leveraged to engineer more precise multi-cellular human cardiac tissue models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助半江采纳,获得20
1秒前
万木春完成签到,获得积分10
3秒前
俭朴的乐巧完成签到 ,获得积分10
8秒前
9秒前
chen完成签到,获得积分10
11秒前
吞吞完成签到 ,获得积分10
12秒前
心落失发布了新的文献求助10
15秒前
666完成签到 ,获得积分10
18秒前
19秒前
20秒前
24秒前
岩乌发布了新的文献求助30
24秒前
心落失完成签到,获得积分10
25秒前
汉堡包应助涨涨涨采纳,获得10
26秒前
cy0824完成签到 ,获得积分10
27秒前
30秒前
慢歌完成签到 ,获得积分10
31秒前
Doctor.TANG完成签到 ,获得积分10
33秒前
今后应助醉熏的牛排采纳,获得10
34秒前
科研通AI5应助琳666采纳,获得10
36秒前
38秒前
北觅完成签到 ,获得积分10
39秒前
苗条世德完成签到,获得积分10
41秒前
故城完成签到 ,获得积分10
41秒前
涨涨涨发布了新的文献求助10
42秒前
招水若离完成签到,获得积分0
43秒前
FashionBoy应助小泽采纳,获得10
43秒前
科研通AI5应助好好学习采纳,获得10
50秒前
花生王子完成签到 ,获得积分10
51秒前
雪落六年yyds完成签到,获得积分10
54秒前
慕青应助DrWang采纳,获得10
54秒前
sailingluwl完成签到,获得积分10
1分钟前
冬雪丶消融完成签到,获得积分10
1分钟前
1分钟前
1分钟前
jennawu完成签到 ,获得积分10
1分钟前
1分钟前
14关闭了14文献求助
1分钟前
yuan完成签到 ,获得积分10
1分钟前
好好学习发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5052781
求助须知:如何正确求助?哪些是违规求助? 4279743
关于积分的说明 13339871
捐赠科研通 4095265
什么是DOI,文献DOI怎么找? 2241489
邀请新用户注册赠送积分活动 1247782
关于科研通互助平台的介绍 1177155