计算机科学
卷积神经网络
变更检测
多光谱图像
启发式
人工智能
RGB颜色模型
模式识别(心理学)
地球观测
比例(比率)
卫星
量子力学
操作系统
物理
工程类
航空航天工程
作者
Rodrigo Caye Daudt,B. Le Saux,Alexandre Boulch
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot
日期:2018-09-07
卷期号:: 4063-4067
被引量:858
标识
DOI:10.1109/icip.2018.8451652
摘要
This paper presents three fully convolutional neural network architectures which perform change detection using a pair of coregistered images. Most notably, we propose two Siamese extensions of fully convolutional networks which use heuristics about the current problem to achieve the best results in our tests on two open change detection datasets, using both RGB and multispectral images. We show that our system is able to learn from scratch using annotated change detection images. Our architectures achieve better performance than previously proposed methods, while being at least 500 times faster than related systems. This work is a step towards efficient processing of data from large scale Earth observation systems such as Copernicus or Landsat.
科研通智能强力驱动
Strongly Powered by AbleSci AI