适体
检出限
色谱法
化学
微分脉冲伏安法
微流控
唾液
肉眼
电极
纳米技术
电化学
循环伏安法
材料科学
生物化学
生物
遗传学
物理化学
作者
László Kékedy‐Nagy,J. Perry,Samuel R. Little,Oriol Ymbern,Steve C. C. Shih
标识
DOI:10.1016/j.bios.2022.114998
摘要
We present a novel "on-off", cost-effective, rapid electrochemical aptasensor combined with a microfluidics cartridge system for the detection of Δ9-THC (Δ9-tetrahydrocannabinol) in human saliva via differential pulse voltammetry. The assay relied on the competitive binding between the Δ9-THC and a soluble redox indicator methylene blue, using an aptamer selected via FRELEX. We found that the aptasensor can detected 1 nM of Δ9-THC in PBS in a three-electrode cell system, while the sensitivity and both the dissociation constant (Kd) and association constant (Kb) were dependent on the aptamer density. The aptamer also showed great affinity towards Δ9-THC when tested against cannabinol and cannabidiol. The same limit of detection of 1 nM in PBS was achieved in small volume samples (∼60 μL) using the aptamer-modified gold screen-printed electrodes combined with the microfluidic cartridge setup, however, the presence of 10% raw human saliva had a negative effect which manifested in a 10-fold increase in the LOD due to interfering elements. Filtering the saliva, improved the tested volume to 50% and the LOD to 5 nM of Δ9-THC which is lower than the concentrations associated with impairment (6.5-32 nM). The aptasensor showed a good storage capability up to 3 days, however, the reusability significantly dropped from 10 cycles (freshly prepared) to 5 cycles. The results clearly demonstrate the feasibility of the aptasensor platform with the microfluidics chamber towards a point-of-care testing application for the detection of Δ9-THC in saliva.
科研通智能强力驱动
Strongly Powered by AbleSci AI