Recent advances in quantum fragmentation approaches to complex molecular and condensed‐phase systems

从头算 量子 化学 非谐性 激发态 电子结构 统计物理学 计算化学 物理 化学物理 量子力学
作者
Jinfeng Liu,Xiao He
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:13 (3) 被引量:23
标识
DOI:10.1002/wcms.1650
摘要

Abstract Quantum mechanical (QM) calculations are critical in quantitatively understanding the relationship between the structure and physicochemical properties of various chemical systems. However, the sharply increasing computational cost with the system size has severely hindered applying direct QM calculations on large‐sized systems. Hence, linear‐scaling and/or fragmentation QM methods have been proposed to overcome this difficulty. In this review, we focus on the recent development and applications of the electrostatically embedded generalized molecular fractionation with the conjugate caps (EE‐GMFCC) method in probing various properties of complex large molecules and condensed‐phase systems. The EE‐GMFCC method is now capable of describing the localized excited states of biomolecules and molecular crystals with a chromophore. The EE‐GMF method is also combined with anharmonic vibrational calculations for accurate simulation of the infrared spectrum of the magic number H + (H 2 O) 21 cluster at the coupled cluster level. With an adaptive fragmentation scheme, the EE‐GMF‐based ab initio molecular dynamics is able to directly simulate chemical reactions occurred in atmospheric molecular clusters. Furthermore, by combining the EE‐GMF(CC) method and deep machine learning techniques, neural network potentials can be efficiently constructed for accurate simulations of complex systems with the accuracy of high‐level wave function methods. The EE‐GMF(CC) method is expected to become a practical tool for quantitative description of complex large molecules and condensed‐phase systems with high‐level ab initio theories or ab initio quality potentials. This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Structure and Mechanism > Computational Biochemistry and Biophysics Structure and Mechanism > Reaction Mechanisms and Catalysis
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
5秒前
共享精神应助zryyy采纳,获得10
7秒前
有的没的发布了新的文献求助10
8秒前
张娇发布了新的文献求助10
9秒前
angelcynthia发布了新的文献求助10
10秒前
10秒前
友好的天奇完成签到,获得积分10
12秒前
龅牙苏完成签到,获得积分10
12秒前
细胞核完成签到,获得积分10
14秒前
情怀应助angelcynthia采纳,获得10
14秒前
kevin完成签到,获得积分10
17秒前
环游世界完成签到 ,获得积分10
18秒前
20秒前
22秒前
13而非大V完成签到,获得积分10
24秒前
怕孤独的鹭洋完成签到,获得积分10
25秒前
年年发布了新的文献求助10
25秒前
Q9完成签到,获得积分10
27秒前
aoyo完成签到,获得积分10
28秒前
MZ完成签到,获得积分0
31秒前
皇帝的床帘完成签到,获得积分10
31秒前
漱玉发布了新的文献求助30
31秒前
百地希留耶完成签到 ,获得积分10
33秒前
36秒前
Young发布了新的文献求助10
37秒前
晚安好梦发布了新的文献求助10
38秒前
俊逸小蕾完成签到,获得积分10
39秒前
Srishti完成签到,获得积分10
42秒前
万能图书馆应助David采纳,获得10
42秒前
42秒前
yy完成签到 ,获得积分10
42秒前
风中的觅儿完成签到,获得积分10
43秒前
山君发布了新的文献求助10
43秒前
健忘的灵槐完成签到,获得积分10
47秒前
輝23发布了新的文献求助10
48秒前
AAA完成签到,获得积分10
50秒前
华仔应助wy采纳,获得20
51秒前
tan90完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A study of torsion fracture tests 510
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4756920
求助须知:如何正确求助?哪些是违规求助? 4099735
关于积分的说明 12685092
捐赠科研通 3814082
什么是DOI,文献DOI怎么找? 2105595
邀请新用户注册赠送积分活动 1130392
关于科研通互助平台的介绍 1008480