亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Signed graph representation learning for functional-to-structural brain network mapping

计算机科学 代表(政治) 图形 人工智能 特征学习 图论 透视图(图形) 机器学习 理论计算机科学 数学 组合数学 政治 政治学 法学
作者
Haoteng Tang,Lei Guo,Xiyao Fu,Yalin Wang,Scott Mackin,Olusola Ajilore,Alex Leow,Paul M. Thompson,Heng Huang,Liang Zhan
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102674-102674 被引量:5
标识
DOI:10.1016/j.media.2022.102674
摘要

MRI-derived brain networks have been widely used to understand functional and structural interactions among brain regions, and factors that affect them, such as brain development and diseases. Graph mining on brain networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases. Since brain functional and structural networks describe the brain topology from different perspectives, exploring a representation that combines these cross-modality brain networks has significant clinical implications. Most current studies aim to extract a fused representation by projecting the structural network to the functional counterpart. Since the functional network is dynamic and the structural network is static, mapping a static object to a dynamic object may not be optimal. However, mapping in the opposite direction (i.e., from functional to structural networks) are suffered from the challenges introduced by negative links within signed graphs. Here, we propose a novel graph learning framework, named as Deep Signed Brain Graph Mining or DSBGM, with a signed graph encoder that, from an opposite perspective, learns the cross-modality representations by projecting the functional network to the structural counterpart. We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets (HCP and OASIS). Our experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
葡紫明完成签到 ,获得积分10
9秒前
10秒前
bkagyin应助小王想要飞采纳,获得10
10秒前
Hcc完成签到 ,获得积分10
14秒前
追求者发布了新的文献求助10
19秒前
zho应助123采纳,获得10
22秒前
28秒前
Iris完成签到 ,获得积分10
30秒前
Akim应助卜天亦采纳,获得10
33秒前
zho应助卜天亦采纳,获得10
34秒前
47秒前
47秒前
iceink发布了新的文献求助200
52秒前
Hillson完成签到,获得积分10
58秒前
1分钟前
岁末完成签到 ,获得积分10
1分钟前
江瑾玥发布了新的文献求助10
1分钟前
chinluo完成签到 ,获得积分10
1分钟前
善学以致用应助lvsehx采纳,获得10
1分钟前
ding应助时间下起了雨采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
shimhjy应助科研通管家采纳,获得20
1分钟前
shimhjy应助科研通管家采纳,获得30
1分钟前
bc应助科研通管家采纳,获得30
1分钟前
1分钟前
lvsehx发布了新的文献求助10
1分钟前
qinLuo完成签到 ,获得积分10
1分钟前
yuanquaner发布了新的文献求助10
1分钟前
ShiYanYang完成签到,获得积分10
1分钟前
yuanquaner完成签到,获得积分10
1分钟前
1分钟前
时间下起了雨完成签到,获得积分20
1分钟前
1分钟前
wc完成签到 ,获得积分10
1分钟前
1分钟前
cookie发布了新的文献求助10
2分钟前
科研助手6应助ZHY采纳,获得10
2分钟前
卜天亦完成签到,获得积分10
2分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352680
关于积分的说明 10359926
捐赠科研通 3068647
什么是DOI,文献DOI怎么找? 1685213
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022