PREDICTION OF NANO-COATED TOOL WEAR USING BAT AND WHALE OPTIMIZATION ALGORITHMS

机械加工 刀具磨损 鲸鱼 材料科学 计算机科学 GSM演进的增强数据速率 过程(计算) 刀具 陶瓷 前角 机械工程 冶金 工程类 人工智能 渔业 生物 操作系统
作者
Senthil Kumaran Selvaraj,Jayakumar Kaliappan,S. RAMESH KUMAR,Chander Prakash,Dharam Buddhi,Lovi Raj Gupta,Haitham Hadidi
出处
期刊:Surface Review and Letters [World Scientific]
卷期号:29 (11) 被引量:1
标识
DOI:10.1142/s0218625x22501529
摘要

In the industrial machining process, there have been major advances in near-net-shaped forming, which leads machining to be considered a significant modern phenomenon. Machining turns a huge number of metals into chips every year. This study aimed to determine the wear and mechanical properties of various cutting inserts. Polycrystalline diamond (PCD) and Ceramic Inserts were selected as coated inserts. It was discovered that tool wear at the cutting edge impacts various factors, including the amount of cutting forces created during machining; the surface finish of the workpiece is also compromised, resulting in reduced tool life. Owing to the frequent replacement of cutting tools, the decreased wear rate of cutting tools exponentially raises the costs that companies/machine shops would incur. After the second iteration, this insert began to develop crater wear, which resulted in a poor surface finish and high heat generation. However, the surface finish of this instrument was discovered to be the best during the first iteration. From the outcome, the PCD coated tool with feed speeds and low depth of cuts performed the efficient machining process. The surface finish is also accurate for PCD coated tool. The bat and whale algorithms’ optimization involved to find the best technical parameters to achieve the lowest possible error value based on rake and face wear. The bat and whale algorithms were used to determine the optimized rake and face wear values. The bat algorithm outperforms the whale algorithm in terms of wear value predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
词语完成签到,获得积分20
4秒前
JayL完成签到,获得积分10
5秒前
7秒前
自由的迎南关注了科研通微信公众号
8秒前
8秒前
allen完成签到,获得积分10
11秒前
英姑应助张宏宇采纳,获得10
11秒前
chuanxizheng发布了新的文献求助10
13秒前
chen完成签到,获得积分10
15秒前
俭朴千万发布了新的文献求助10
16秒前
潘果果完成签到,获得积分10
18秒前
文静的绯完成签到,获得积分10
18秒前
英姑应助chuanxizheng采纳,获得10
22秒前
胡萝卜完成签到 ,获得积分10
22秒前
23秒前
李健应助自觉冰兰采纳,获得10
24秒前
26秒前
27秒前
28秒前
清图完成签到,获得积分10
30秒前
31秒前
可爱小笼包完成签到,获得积分10
31秒前
tuzhifengyin完成签到,获得积分10
32秒前
Hello应助着急的小松鼠采纳,获得10
32秒前
浅浅完成签到 ,获得积分10
32秒前
34秒前
糜厉完成签到,获得积分10
34秒前
昭谏发布了新的文献求助10
34秒前
尤静柏发布了新的文献求助10
35秒前
yelv123完成签到,获得积分10
35秒前
科研通AI5应助手抓饼啊采纳,获得30
36秒前
36秒前
顺利兰完成签到 ,获得积分10
38秒前
蛮蛮发布了新的文献求助10
39秒前
内坻崿完成签到,获得积分10
39秒前
40秒前
南楼小阁主完成签到,获得积分10
41秒前
42秒前
swzzaf完成签到,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779613
求助须知:如何正确求助?哪些是违规求助? 3325127
关于积分的说明 10221318
捐赠科研通 3040220
什么是DOI,文献DOI怎么找? 1668678
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535