亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning CT projection denoising from adjacent views

人工智能 投影(关系代数) 计算机科学 成像体模 离群值 模式识别(心理学) 相似性(几何) 无监督学习 医学影像学 噪音(视频) 降噪 计算机视觉 数学 图像(数学) 算法 核医学 医学
作者
Zixuan Hong,Dong Zeng,Xi Tao,JianHua Ma,Zixuan Hong,Dong Zeng,Xi Tao,JianHua Ma
出处
期刊:Medical Physics [Wiley]
卷期号:50 (3): 1367-1377 被引量:5
标识
DOI:10.1002/mp.16115
摘要

Abstract Background Many learning‐based low‐dose (LD) computed tomography (CT) imaging methods require large paired full‐ and low‐dose datasets for training, which are usually unavailable in clinic. Whereas models trained on simulated data often face the generalization problem on real clinical data. Purpose To develop an unsupervised learning technique to acquire clean CT projection from its adjacent LD projections. Methods Given a sequential LD projection set, the method extracts out the middle projection as the target and treats the rest ones as the input. The model is trained with the mean absolute error with proposed inter‐view gradient constraint term, which helps to suppress outliers and preserve edges in the denoised projection. The simulated low‐dose CT grand challenge dataset and a real physical torso phantom dataset were employed for experiment. The peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) were calculated for quantitative evaluation. Results In experiments with both the simulated and real datasets, visual comparisons reveal that the proposed method obtained images superior to unsupervised and supervised methods working in both image and projection domain. For numerical comparison, our method obtains larger SSIMs than other unsupervised methods at quarter and eighth dose levels. As for PSNR, our method obtains larger value at eighth dose whereas smaller value at quarter dose. The supervised models obtain better numerical results than all unsupervised models on simulated datasets. Conclusion The proposed method can reduce the noise in CT projections effectively, making it an attractive tool for practical LDCT pre‐processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助优雅的凝阳采纳,获得10
刚刚
2秒前
7秒前
10秒前
刘坦苇发布了新的文献求助10
13秒前
SciGPT应助刘坦苇采纳,获得10
20秒前
31秒前
刘坦苇发布了新的文献求助10
36秒前
37秒前
38秒前
40秒前
Rocky_Qi发布了新的文献求助10
46秒前
52秒前
57秒前
1分钟前
Elthrai完成签到 ,获得积分10
1分钟前
1分钟前
敏敏9813完成签到,获得积分10
1分钟前
老老熊完成签到,获得积分10
2分钟前
Chen完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
小石榴的爸爸完成签到 ,获得积分10
3分钟前
3分钟前
小石榴爸爸完成签到 ,获得积分10
3分钟前
林夕完成签到 ,获得积分10
3分钟前
情怀应助雨落采纳,获得10
3分钟前
3分钟前
4分钟前
雨落发布了新的文献求助10
4分钟前
breeze发布了新的文献求助50
4分钟前
弈天完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Rocky_Qi发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482484
求助须知:如何正确求助?哪些是违规求助? 4583253
关于积分的说明 14389109
捐赠科研通 4512357
什么是DOI,文献DOI怎么找? 2472920
邀请新用户注册赠送积分活动 1459096
关于科研通互助平台的介绍 1432591