Enzyme activity engineering based on sequence co-evolution analysis

定向进化 定向分子进化 生物 蛋白质工程 生物化学 活动站点 酶分析 序列空间 计算生物学 脱氢酶 遗传学 基因 数学 巴拿赫空间 突变体 纯数学
作者
Donghyo Kim,Myung Hyun Noh,Minhyuk Park,Inhae Kim,Hyunsoo Ahn,Dae-yeol Ye,Gyoo Yeol Jung,Sanguk Kim
出处
期刊:Metabolic Engineering [Elsevier BV]
卷期号:74: 49-60 被引量:18
标识
DOI:10.1016/j.ymben.2022.09.001
摘要

The utility of engineering enzyme activity is expanding with the development of biotechnology. Conventional methods have limited applicability as they require high-throughput screening or three-dimensional structures to direct target residues of activity control. An alternative method uses sequence evolution of natural selection. A repertoire of mutations was selected for fine-tuning enzyme activities to adapt to varying environments during the evolution. Here, we devised a strategy called sequence co-evolutionary analysis to control the efficiency of enzyme reactions (SCANEER), which scans the evolution of protein sequences and direct mutation strategy to improve enzyme activity. We hypothesized that amino acid pairs for various enzyme activity were encoded in the evolutionary history of protein sequences, whereas loss-of-function mutations were avoided since those are depleted during the evolution. SCANEER successfully predicted the enzyme activities of beta-lactamase and aminoglycoside 3′-phosphotransferase. SCANEER was further experimentally validated to control the activities of three different enzymes of great interest in chemical production: cis-aconitate decarboxylase, α-ketoglutaric semialdehyde dehydrogenase, and inositol oxygenase. Activity-enhancing mutations that improve substrate-binding affinity or turnover rate were found at sites distal from known active sites or ligand-binding pockets. We provide SCANEER to control desired enzyme activity through a user-friendly webserver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
了了发布了新的文献求助50
刚刚
SciGPT应助咯咯哒采纳,获得10
1秒前
852应助lty采纳,获得10
1秒前
徐小树发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
miao完成签到,获得积分10
10秒前
研友_ZAyqJZ发布了新的文献求助10
12秒前
16秒前
16秒前
心悦SCI完成签到,获得积分10
20秒前
lty发布了新的文献求助10
21秒前
Dr发布了新的文献求助10
23秒前
远山完成签到,获得积分10
26秒前
qiaoxixi发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
SYLH应助科研通管家采纳,获得10
34秒前
SYLH应助科研通管家采纳,获得10
34秒前
SYLH应助科研通管家采纳,获得10
35秒前
SYLH应助科研通管家采纳,获得10
35秒前
SYLH应助科研通管家采纳,获得10
35秒前
SYLH应助科研通管家采纳,获得10
35秒前
SYLH应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
上官若男应助科研通管家采纳,获得10
35秒前
35秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
SYLH应助科研通管家采纳,获得10
35秒前
斯文败类应助科研通管家采纳,获得20
36秒前
烟花应助科研通管家采纳,获得10
36秒前
SYLH应助科研通管家采纳,获得10
36秒前
36秒前
37秒前
42秒前
42秒前
Nancy发布了新的文献求助10
46秒前
46秒前
46秒前
minmin完成签到,获得积分10
46秒前
科目三应助热情的未来采纳,获得10
48秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863407
求助须知:如何正确求助?哪些是违规求助? 3405732
关于积分的说明 10646377
捐赠科研通 3129458
什么是DOI,文献DOI怎么找? 1725906
邀请新用户注册赠送积分活动 831322
科研通“疑难数据库(出版商)”最低求助积分说明 779742