Intrusion detection system using hybrid classifiers with meta-heuristic algorithms for the optimization and feature selection by genetic algorithm

元启发式 算法 特征选择 启发式 遗传算法 选择(遗传算法) 入侵检测系统 计算机科学 优化算法 特征(语言学) 人工智能 模式识别(心理学) 机器学习 数学 数学优化 语言学 哲学
作者
Nilesh Kunhare,Ritu Tiwari,Joydip Dhar
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:103: 108383-108383 被引量:15
标识
DOI:10.1016/j.compeleceng.2022.108383
摘要

An intrusion detection system (IDS) is considered critical for detecting threats, intrusions, and unauthorized access. IDS monitors massive network traffic that includes irrelevant and extravagant features that profoundly impact the system’s efficiency and slow down the classification process for accurate decisions. Its effectiveness is tested over the various techniques that comprise an enormous volume of data and heavy network traffic. Many approaches, such as machine learning algorithms , data mining , swarm intelligence , and artificial neural networks (ANN), have been implemented for adequate and improved IDSs. This paper recommends a novel feature selection method using a genetic algorithm (GA) that determines the optimal feature subsets from the NSL-KDD dataset. Further, hybrid classification has been performed using logistic regression (LR) and decision tree (DT) to achieve a better detection rate (DR) and accuracy (ACC). This research applied and compared several meta-heuristic algorithms’ performance to optimize the selected optimal features. The experimental results show that the grey wolf optimization (GWO) algorithm gives the best accuracy of 99.44% and DR of 99.36% with the reduction of features (=20) out of (=41). The results of the proposed work are compared with the existing feature selection methods to verify improved performance. • Novel feature selection method using a genetic algorithm (GA) that determines the optimal feature subsets. • Hybrid classification to achieve a better detection rate (DR) and accuracy (ACC). • Compared several meta-heuristic algorithms’ performance to optimize the selected optimal features. • The grey wolf optimization (GWO) algorithm gives the best accuracy of 99.44% and DR of 99.36% with the reduction of features (=20) out of (=41). • Optimization for improvement of IDS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
XY完成签到 ,获得积分10
4秒前
FAYE完成签到,获得积分10
6秒前
8秒前
9秒前
10秒前
科研通AI5应助黎小静采纳,获得10
12秒前
Ava应助CHB只争朝夕采纳,获得10
12秒前
wwwww发布了新的文献求助200
14秒前
kc135完成签到,获得积分10
14秒前
李健应助再来俩汉堡采纳,获得10
15秒前
aura完成签到,获得积分10
17秒前
19秒前
20秒前
言小鱼发布了新的文献求助10
22秒前
木子完成签到,获得积分10
23秒前
24秒前
傻傻的哈密瓜完成签到,获得积分10
25秒前
黎小静发布了新的文献求助10
25秒前
Hello应助kzf丶bryant采纳,获得10
26秒前
sky完成签到 ,获得积分10
27秒前
zz321发布了新的文献求助10
27秒前
31秒前
小楠完成签到,获得积分10
33秒前
34秒前
34秒前
黎小静完成签到,获得积分10
37秒前
kzf丶bryant发布了新的文献求助10
38秒前
Lucas应助Hoax采纳,获得10
41秒前
晓宇发布了新的文献求助10
41秒前
陈龙111111发布了新的文献求助10
43秒前
含糊的念梦完成签到,获得积分10
44秒前
46秒前
断棍豪斯完成签到,获得积分10
46秒前
49秒前
52秒前
53秒前
zpmi完成签到,获得积分10
54秒前
充电宝应助蹦擦擦采纳,获得10
54秒前
田様应助陈龙111111采纳,获得10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385