Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches

弹丸 计算机科学 材料科学 冶金
作者
Feng Yuan,Aoran Shen,Jinxia Hu,Yingbin Liang,Shiru Wang,Junliang Du
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2411.16567
摘要

This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning in a framework designed to tackle the challenges posed by small-sample data. Recognizing the critical limitations of traditional machine learning models that require large datasets-especially in fields such as drug discovery, target recognition, and malicious traffic detection-this study proposes a novel strategy that leverages Generative Adversarial Networks (GANs) and advanced optimization techniques to improve model performance with limited data. Specifically, the paper addresses the noise and bias issues introduced by data augmentation methods, contrasting them with model-based approaches, such as fine-tuning and metric learning, which rely heavily on related datasets. By combining Markov Chain Monte Carlo (MCMC) sampling and discriminative model ensemble strategies within a GAN framework, the proposed model adjusts generative and discriminative distributions to simulate a broader range of relevant data. Furthermore, it employs MHLoss and a reparameterized GAN ensemble to enhance stability and accelerate convergence, ultimately leading to improved classification performance on small-sample images and structured datasets. Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning, offering a practical solution that bridges data scarcity with high-performing model adaptability and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xugege完成签到,获得积分20
刚刚
星辰大海应助鹿阿布采纳,获得10
刚刚
Minicoper完成签到,获得积分10
1秒前
手术刀完成签到 ,获得积分10
3秒前
Y_完成签到 ,获得积分10
3秒前
上官若男应助glimmer采纳,获得30
7秒前
meng完成签到,获得积分10
7秒前
和平星完成签到 ,获得积分10
7秒前
7秒前
独特的秋完成签到,获得积分10
8秒前
不再挨训完成签到 ,获得积分10
13秒前
yueyueyue完成签到,获得积分10
14秒前
西蓝花香菜完成签到 ,获得积分10
14秒前
ahh完成签到 ,获得积分10
15秒前
趁微风不躁完成签到,获得积分10
15秒前
萌小鱼完成签到 ,获得积分10
17秒前
王小玮完成签到,获得积分10
17秒前
慕青应助YDY采纳,获得10
17秒前
123free完成签到,获得积分10
18秒前
谨慎的凝丝完成签到,获得积分10
18秒前
阿铭完成签到 ,获得积分10
20秒前
一个爱吃爱睡的团子完成签到,获得积分10
22秒前
chen完成签到,获得积分10
22秒前
忧心的硬币完成签到,获得积分10
22秒前
张wx_100完成签到,获得积分10
24秒前
傲娇的云朵完成签到,获得积分10
27秒前
滴滴答答完成签到 ,获得积分10
27秒前
nick完成签到,获得积分10
31秒前
安静的乐松完成签到,获得积分10
34秒前
积极从蕾发布了新的文献求助10
35秒前
香蕉觅云应助Henry采纳,获得10
36秒前
小厮完成签到,获得积分10
37秒前
hi应助persist采纳,获得10
38秒前
楚楚楚完成签到,获得积分10
39秒前
任性的初蝶完成签到,获得积分10
39秒前
chen完成签到,获得积分10
40秒前
42秒前
乌云乌云快走开完成签到,获得积分10
43秒前
44秒前
Xiaoyan完成签到,获得积分10
45秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061475
求助须知:如何正确求助?哪些是违规求助? 3600072
关于积分的说明 11432524
捐赠科研通 3323688
什么是DOI,文献DOI怎么找? 1827448
邀请新用户注册赠送积分活动 897931
科研通“疑难数据库(出版商)”最低求助积分说明 818728