亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence based BCI using SSVEP signals with single channel EEG

脑-机接口 支持向量机 计算机科学 线性判别分析 人工智能 模式识别(心理学) 脑电图 水准点(测量) 运动表象 频道(广播) 决策树 特征提取 语音识别 特征(语言学) 机器学习 精神科 地理 哲学 语言学 计算机网络 心理学 大地测量学
作者
Venkatesh Kanagaluru,M. Sasikala
出处
期刊:Technology and Health Care [IOS Press]
标识
DOI:10.1177/09287329241302740
摘要

Background Brain–Computer Interfaces (BCIs) enable direct communication between the brain and external devices. Steady-state visual-evoked potentials (SSVEPs) are particularly useful in BCIs because of their rapid communication capabilities and minimal calibration requirements. Although SSVEP-based BCIs are highly effective, traditional classification methods face challenges in maintaining high accuracy with minimal EEG channels, especially in real-world applications. There is a growing need for improved classification techniques to enhance performance and efficiency. Objective The aim of this research is to improve the classification of SSVEP signals using machine-learning algorithms. This involves extracting dominant frequency features from SSVEP data and applying classifiers such as Decision Tree (DT), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM) to achieve high accuracy while reducing the number of EEG channels required, making the method practical for BCI applications. Methods SSVEP data were collected from the Benchmark Dataset at Tsinghua BCI Lab using 64 EEG channels per subject. The Oz channel was selected as the dominant channel for analysis. Wavelet decomposition (db4) was used to extract frequency features in the range 7.8 Hz to 15.6 Hz. The frequency of the maximum amplitude within a 5-s window was extracted as the key feature, and machine learning models (DT, LDA, and SVM) were applied to classify these features. Results The proposed method achieved a high classification accuracy, with 95.8% for DT and 96.7% for both LDA and SVM. These results show significant improvement over existing methods, indicating the potential of this approach for BCI applications. Conclusion This study demonstrates that SSVEP classification using machine-learning models improves accuracy and efficiency. The use of wavelet decomposition for feature extraction and machine learning for classification offers a robust method for SSVEP-based BCIs. This method is promising for assistive technologies and other BCI applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
奔跑的蒲公英完成签到,获得积分10
7秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
27秒前
38秒前
量子星尘发布了新的文献求助10
47秒前
橘子气泡水完成签到 ,获得积分10
51秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
科研通AI5应助科研通管家采纳,获得10
53秒前
科研通AI5应助科研通管家采纳,获得10
53秒前
54秒前
56秒前
1分钟前
1分钟前
1分钟前
MchemG完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Z17完成签到 ,获得积分10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
aldehyde应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
aldehyde应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
思源应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
rockxie完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
沸腾的大海完成签到,获得积分10
6分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883756
求助须知:如何正确求助?哪些是违规求助? 3426130
关于积分的说明 10746909
捐赠科研通 3150946
什么是DOI,文献DOI怎么找? 1739077
邀请新用户注册赠送积分活动 839598
科研通“疑难数据库(出版商)”最低求助积分说明 784720