Design of trailing edge flap based on MFC and prediction of deformation and aerodynamic performance using BP neural network

后缘 翼型 空气动力学 直升机旋翼 振动 人工神经网络 执行机构 工程类 Lift(数据挖掘) 结构工程 噪音(视频) 转子(电动) 声学 计算机科学 航空航天工程 机械工程 人工智能 物理 数据挖掘 电气工程 图像(数学)
作者
Yongsheng Niu,Hongli Ji,Chongcong Tao,Chao Zhang,Yipeng Wu,Jinhao Qiu
出处
期刊:Journal of Intelligent Material Systems and Structures [SAGE Publishing]
标识
DOI:10.1177/1045389x241305660
摘要

In terms of vibration and noise reduction for helicopter, Active Control Flap (ACF) rotor technology, leveraging smart materials, stands out as a promising and advantageous approach. This paper focuses on the design, modeling, and simulation of a novel structure integrated with trailing-edge flap and composite rotor blade driven by Macro Fiber Composite (MFC) actuators. A 3D model is employed to simulate the deformation response of the flap under different driving voltage levels. The results were validated by experimental data. Additionally, Fluid-Structure Interaction (FSI) analysis is applied to explore the deflections of the trailing-edge flap under various flight conditions and its corresponding aerodynamic characteristics. The findings reveal that the designed trailing-edge flap significantly influences the aerodynamic lift and pitch moment of the airfoil at operational speed and angle of attack of the helicopter blade. Finally, a Back Propagation (BP) Neural Network is introduced to establish a fast predictive model for the intricate nonlinear response characteristics of the ACF rotor. The network is trained and tested with appropriately chosen sample data, demonstrating high prediction accuracy and reliability. This model serves as a theoretical reference for subsequent application of ACF technology in vibration and noise reduction, providing valuable insights for further research and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
量子星尘发布了新的文献求助10
2秒前
CanLiu完成签到,获得积分10
2秒前
zhixiang完成签到,获得积分10
2秒前
3秒前
何不可发布了新的文献求助30
3秒前
4秒前
fiu~完成签到 ,获得积分10
6秒前
赘婿应助zeno采纳,获得10
6秒前
无花果应助holin采纳,获得10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
优秀不愁发布了新的文献求助10
10秒前
熊猫之歌完成签到,获得积分10
10秒前
Aha完成签到 ,获得积分10
12秒前
Shawnchan完成签到,获得积分10
12秒前
罗美美完成签到,获得积分10
12秒前
12秒前
12秒前
TK完成签到,获得积分10
14秒前
科研通AI2S应助昏睡的蟠桃采纳,获得30
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
吕邓宏完成签到 ,获得积分10
19秒前
20秒前
隐形曼青应助water128采纳,获得10
20秒前
yoonkk完成签到,获得积分10
20秒前
21秒前
领导范儿应助Anglebyebyeye采纳,获得10
22秒前
铭心发布了新的文献求助10
22秒前
顾矜应助甜甜哩采纳,获得10
23秒前
明理冷梅完成签到 ,获得积分10
23秒前
浮游应助小心翼翼采纳,获得10
23秒前
量子星尘发布了新的文献求助20
24秒前
24秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
金属塑性变形多尺度模拟 400
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Literature and Art as Cognitive Objects 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4672757
求助须知:如何正确求助?哪些是违规求助? 4051537
关于积分的说明 12529242
捐赠科研通 3745185
什么是DOI,文献DOI怎么找? 2068347
邀请新用户注册赠送积分活动 1097707
科研通“疑难数据库(出版商)”最低求助积分说明 977834