二部图
同步(交流)
计算机科学
人工神经网络
对偶(语法数字)
反应扩散系统
李雅普诺夫函数
数学
控制理论(社会学)
图形
控制(管理)
拓扑(电路)
理论计算机科学
人工智能
组合数学
量子力学
物理
文学类
数学分析
艺术
非线性系统
作者
Xiaona Song,Nana Wu,Shuai Song,Yijun Zhang,Vladimir Stojanović
出处
期刊:Neurocomputing
[Elsevier BV]
日期:2023-06-27
卷期号:550: 126498-126498
被引量:123
标识
DOI:10.1016/j.neucom.2023.126498
摘要
The pinning-like bipartite synchronization is investigated for reaction–diffusion neural networks with cooperative-competitive interactions in this paper. First, a dural event-triggered control algorithm based on the time–space sampled-data scheme is employed to further decrease the transmission resources’ consumption. Then, some sufficient conditions that guarantee the bipartite synchronization for the target neural networks with the signed graph are obtained by virtue of the Lyapunov method, Halanay’s inequalities, and the pinning control technique. Moreover, new weighted integral inequalities are introduced to get higher upper bounds than what traditional inequality produces. Finally, a numerical simulation result is given to validate the advantages of the proposed method for realizing bipartite synchronization.
科研通智能强力驱动
Strongly Powered by AbleSci AI