Deep metric learning framework combined with Gramian angular difference field image generation for Raman spectra classification based on a handheld Raman spectrometer

拉曼光谱 公制(单位) 人工智能 计算机科学 深度学习 移动设备 模式识别(心理学) 计算机视觉 机器学习 光学 工程类 物理 运营管理 操作系统
作者
Yaoyi Cai,Zhiyi Yao,Xi Cheng,Yixuan He,Shiwen Li,Jiaji Pan
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:303: 123085-123085
标识
DOI:10.1016/j.saa.2023.123085
摘要

Rapid identification of unknown material samples using portable or handheld Raman spectroscopy detection equipment is becoming a common analytical tool. However, the design and implementation of a set of Raman spectroscopy-based devices for substance identification must include spectral sampling of standard reference substance samples, resolution matching between different devices, and the training process of the corresponding classification models. The process of selecting a suitable classification model is frequently time-consuming, and when the number of classes of substances to be recognised increases dramatically, recognition accuracy decreases dramatically. In this paper, we propose a fast classification method for Raman spectra based on deep metric learning networks combined with the Gramian angular difference field (GADF) image generation approach. First, we uniformly convert Raman spectra acquired at different resolutions into GADF images of the same resolution, addressing spectral dimension disparities induced by resolution differences in different Raman spectroscopy detection devices. Second, a network capable of implementing nonlinear distance measurements between GADF images of different classes of substances is designed based on a deep metric learning approach. The Raman spectra of 450 different mineral classes obtained from the RRUFF database were converted into GADF images and used to train this deep metric learning network. Finally, the trained network can be installed on an embedded computing platform and used in conjunction with portable or handheld Raman spectroscopic detection sensors to perform material identification tasks at various scales. A series of experiments demonstrate that our trained deep metric learning network outperforms existing mainstream machine learning models on classification tasks of different sizes. For the two tasks of Raman spectral classification of natural minerals of 260 classes and Raman spectral classification of pathogenic bacteria of 8 classes with significant noise, our suggested model achieved 98.05% and 90.13% classification accuracy, respectively. Finally, we also deployed the model in a handheld Raman spectrometer and conducted identification experiments on 350 samples of chemical substances attributed to 32 classes, achieving a classification accuracy of 99.14%. These results demonstrate that our method can greatly improve the efficiency of developing Raman spectroscopy-based substance detection devices and can be widely used in tasks of unknown substance identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草木发布了新的文献求助10
刚刚
YAN完成签到,获得积分10
刚刚
Poppy完成签到,获得积分10
7秒前
jenningseastera应助haha9haha采纳,获得10
8秒前
10秒前
百里伟祺完成签到,获得积分10
10秒前
10秒前
13秒前
lucky666tyy完成签到,获得积分10
13秒前
屋巫奈奈完成签到,获得积分10
13秒前
zhenyan完成签到,获得积分10
14秒前
清颜完成签到 ,获得积分10
16秒前
16秒前
黄可以发布了新的文献求助10
16秒前
灵巧尔云完成签到,获得积分10
16秒前
zhenyan发布了新的文献求助10
17秒前
恒牙完成签到 ,获得积分10
18秒前
YCD应助wahoo采纳,获得10
20秒前
草木发布了新的文献求助10
21秒前
22秒前
Vesper发布了新的文献求助10
28秒前
29秒前
zkf完成签到,获得积分10
29秒前
33秒前
今后应助草木采纳,获得10
34秒前
忐忑的黑猫应助dsdjsicj采纳,获得10
36秒前
汤泽琪发布了新的文献求助10
37秒前
科研通AI5应助Vesper采纳,获得10
38秒前
巷子里的猫完成签到,获得积分10
38秒前
39秒前
NexusExplorer应助zsj采纳,获得10
40秒前
50秒前
keaid完成签到 ,获得积分10
52秒前
53秒前
55秒前
刘胖胖发布了新的文献求助10
57秒前
yr完成签到,获得积分10
58秒前
ligengxu发布了新的文献求助10
1分钟前
zhaxiao完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778030
求助须知:如何正确求助?哪些是违规求助? 3323705
关于积分的说明 10215513
捐赠科研通 3038914
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339