Conditional Boundary Loss for Semantic Segmentation

分割 计算机科学 人工智能 边界(拓扑) 帕斯卡(单位) 图像分割 像素 尺度空间分割 模式识别(心理学) 条件随机场 背景(考古学) 计算机视觉 数学 地理 数学分析 考古 程序设计语言
作者
Dongyue Wu,Zilin Guo,Aoyan Li,Changqian Yu,Changxin Gao,Nong Sang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 3717-3731 被引量:26
标识
DOI:10.1109/tip.2023.3290519
摘要

Improving boundary segmentation results has recently attracted increasing attention in the field of semantic segmentation. Since existing popular methods usually exploit the long-range context, the boundary cues are obscure in the feature space, leading to poor boundary results. In this paper, we propose a novel conditional boundary loss (CBL) for semantic segmentation to improve the performance of the boundaries. The CBL creates a unique optimization goal for each boundary pixel, conditioned on its surrounding neighbors. The conditional optimization of the CBL is easy yet effective. In contrast, most previous boundary-aware methods have difficult optimization goals or may cause potential conflicts with the semantic segmentation task. Specifically, the CBL enhances the intra-class consistency and inter-class difference, by pulling each boundary pixel closer to its unique local class center and pushing it away from its different-class neighbors. Moreover, the CBL filters out noisy and incorrect information to obtain precise boundaries, since only surrounding neighbors that are correctly classified participate in the loss calculation. Our loss is a plug-and-play solution that can be used to improve the boundary segmentation performance of any semantic segmentation network. We conduct extensive experiments on ADE20K, Cityscapes, and Pascal Context, and the results show that applying the CBL to various popular segmentation networks can significantly improve the mIoU and boundary F-score performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Winter采纳,获得10
1秒前
2秒前
机灵柚子应助超帅千万采纳,获得20
2秒前
2秒前
2秒前
4秒前
明哥完成签到,获得积分10
6秒前
ladysansan发布了新的文献求助80
7秒前
8秒前
9秒前
我是老大应助执着的以晴采纳,获得20
10秒前
云136完成签到,获得积分10
10秒前
11秒前
fdsfd发布了新的文献求助10
13秒前
ding应助zky采纳,获得10
15秒前
pihou应助海的呼唤采纳,获得10
15秒前
16秒前
17秒前
肖旻发布了新的文献求助10
17秒前
dengdeng发布了新的文献求助30
18秒前
Kasom完成签到 ,获得积分10
19秒前
19秒前
19秒前
达乐发布了新的文献求助10
21秒前
木子发布了新的文献求助10
22秒前
后会无期完成签到,获得积分10
22秒前
23秒前
25秒前
26秒前
qiqi完成签到 ,获得积分10
27秒前
耿耿完成签到 ,获得积分10
27秒前
Winter完成签到,获得积分10
28秒前
lhy完成签到,获得积分10
29秒前
30秒前
孙刚完成签到 ,获得积分10
30秒前
31秒前
32秒前
Pony发布了新的文献求助10
35秒前
Neo应助JiadePeng采纳,获得10
35秒前
冷静映寒发布了新的文献求助10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171129
求助须知:如何正确求助?哪些是违规求助? 3706599
关于积分的说明 11695134
捐赠科研通 3392446
什么是DOI,文献DOI怎么找? 1860702
邀请新用户注册赠送积分活动 920531
科研通“疑难数据库(出版商)”最低求助积分说明 832740