Integration of UPLC-Q-TOF-MS/MS, chemometrics and network pharmacology to discovery potential quality markers in Sinomenii Caulis

化学计量学 巴马汀 苄基异喹啉 生物碱 随机森林 阿扑啡 计算生物学 传统医学 化学 计算机科学 生物 人工智能 机器学习 医学 立体化学 生物化学 生物合成
作者
Wenlong Li,Zhiyong Zhang,Mingwu Ren,He He,Yanjun Zhu,Yuming Huang,Ping Qiu,Yunfei Hu
出处
期刊:Authorea - Authorea
标识
DOI:10.22541/au.168388950.07701825/v1
摘要

Rationale: There are significant differences in Sinomenii Caulis (SC) obtained from different geographical regions and medicinal plant parts. This study aims to explore potential quality markers that are correlated with clinical efficacy in SC by a comprehensive strategy that integrates chemical profiling, chemometrics, and network pharmacology. Methods: First, an alkaloid database was created through the utilization of the UNIFI system to qualitatively analyze of alkaloids in SC. Then, differential compounds in SC collected from various geographic regions were screened by applying multivariate data analysis. Subsequently, the support vector machine (SVM) and random forest (RF) algorithms are adopted to calculate the grouping accuracy of different components. Finally, network pharmacology was conducted to analyze the pharmacological properties and potential associations of these target compounds. Results: A total of 81 alkaloids were identified from SC samples, including 13 aporphine alkaloids, 18 protoberberine alkaloids, 32 morphine alkaloids, 10 benzylisoquinoline alkaloids, and 8 other types of alkaloids. Notably, palmatine, sinoracutine, and magnoflorine are active ingredients with the ability to differentiate the different regions of SC samples. And thus should be prioritized when selecting quality markers. Additionally, it was observed that the RF algorithms demonstrated higher classification accuracy than the SVM model. Conclusion: This comprehensive strategy may prove to be a powerful technique for screening the quality markers components, which could be used for the quality control of SC, and can serve as reference for design of quality control of other herbs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爵炜发布了新的文献求助10
1秒前
1秒前
大力的忆霜完成签到 ,获得积分10
2秒前
自觉的K完成签到,获得积分10
3秒前
谦让的青亦完成签到,获得积分10
3秒前
4秒前
jonghuang发布了新的文献求助10
4秒前
自信的伊完成签到,获得积分10
4秒前
4秒前
如意草丛发布了新的文献求助10
5秒前
聪明十三完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
调皮黑猫应助Choi采纳,获得50
6秒前
7秒前
小明完成签到,获得积分20
8秒前
高挑的芷珍关注了科研通微信公众号
8秒前
9秒前
杨晓白发布了新的文献求助10
9秒前
MM发布了新的文献求助10
10秒前
自信的伊发布了新的文献求助10
10秒前
66666完成签到,获得积分10
11秒前
11秒前
严易云完成签到,获得积分10
12秒前
husy完成签到,获得积分10
13秒前
万能图书馆应助Nan采纳,获得10
14秒前
粒子完成签到,获得积分10
15秒前
15秒前
16秒前
曾经阁发布了新的文献求助10
17秒前
思源应助朴素的焦采纳,获得10
18秒前
MM完成签到,获得积分20
18秒前
19秒前
小张发布了新的文献求助30
20秒前
所所应助随便采纳,获得10
21秒前
烟花应助Captain采纳,获得10
21秒前
科研通AI5应助无聊的幻天采纳,获得30
22秒前
欣喜惜筠完成签到,获得积分10
23秒前
李健的小迷弟应助XJYXJY采纳,获得10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791756
求助须知:如何正确求助?哪些是违规求助? 3336090
关于积分的说明 10278727
捐赠科研通 3052729
什么是DOI,文献DOI怎么找? 1675280
邀请新用户注册赠送积分活动 803318
科研通“疑难数据库(出版商)”最低求助积分说明 761165