Defect-aware transformer network for intelligent visual surface defect detection

变压器 计算机科学 人工智能 编码器 工程类 数据挖掘 电压 电气工程 操作系统
作者
Hongbing Shang,Chuang Sun,Jinxin Liu,Xuefeng Chen,Ruqiang Yan
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:55: 101882-101882 被引量:64
标识
DOI:10.1016/j.aei.2023.101882
摘要

Surface defect detection plays an increasing role in intelligent manufacturing and product life-cycle management, such as quality inspection, process monitoring, and preventive maintenance. The existing intelligent methods almost adopt convolution architecture, and the limited receptive field hinders performance improvement of defect detection. In general, a larger receptive field can bring richer contextual information, resulting in better performance. Although operations such as dilated convolution can expand the receptive field, this improvement is still limited. Recently, benefitting from the ability to model long-range dependencies, Transformer-based models achieve great success in computer vision and image processing. However, applying Transformer-based models without modification is not desirable because there is no awareness and pertinence to defects. In this paper, an intelligent method is proposed by using defect-aware Transformer network (DAT-Net). In DAT-Net, Transformer replaces convolution in encoder to overcome the difficulty of modeling long-range dependencies. Defect-aware module assembled by basic weight matrixes is incorporated into Transformer to perceive and capture geometry and characteristic of defect. Graph position encoding by constructing a dynamic graph on tokens is designed to provide auxiliary positional information, which brings desired improved performance and fine adaptability. Specially, we carry out field experiments and painstakingly construct blade defect and tool wear datasets to compare DAT-Net with other methods. The comprehensive experiments demonstrate that DAT-Net has superior performance with 90.19 mIoU on blade defect dataset and 87.24 mIoU on tool wear dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aurora发布了新的文献求助10
刚刚
充电宝应助勤恳的宛菡采纳,获得10
1秒前
John完成签到 ,获得积分10
1秒前
2秒前
君陌完成签到,获得积分10
2秒前
溶胶完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
tracer发布了新的文献求助10
3秒前
杨新苗完成签到,获得积分20
4秒前
英俊的铭应助科研小白采纳,获得10
4秒前
ZXZ完成签到,获得积分20
4秒前
熊猫侠完成签到,获得积分10
4秒前
一只龟龟完成签到 ,获得积分10
4秒前
发生了什么完成签到,获得积分10
5秒前
YY再摆烂完成签到,获得积分10
5秒前
君陌发布了新的文献求助10
6秒前
6秒前
6秒前
Mark关注了科研通微信公众号
7秒前
bbrfu完成签到,获得积分20
7秒前
熊猫侠发布了新的文献求助30
7秒前
111发布了新的文献求助80
7秒前
充电宝应助论文发发发采纳,获得30
8秒前
飞松发布了新的文献求助10
8秒前
9秒前
空的境界完成签到 ,获得积分10
9秒前
Aurora完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
甜甜玫瑰应助Xinxxx采纳,获得10
10秒前
11秒前
Orange应助优秀的荠采纳,获得10
12秒前
iNk应助asdfqwer采纳,获得10
12秒前
12秒前
jy完成签到,获得积分20
12秒前
unique完成签到,获得积分20
13秒前
撒玉发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793862
求助须知:如何正确求助?哪些是违规求助? 3338735
关于积分的说明 10291207
捐赠科研通 3055146
什么是DOI,文献DOI怎么找? 1676366
邀请新用户注册赠送积分活动 804406
科研通“疑难数据库(出版商)”最低求助积分说明 761853