Data-Driven Development of Three-Dimensional Subsurface Models from Sparse Measurements Using Bayesian Compressive Sampling: A Benchmarking Study

标杆管理 计算机科学 数据挖掘 稳健性(进化) 压缩传感 机器学习 一套 稀疏矩阵 算法 人工智能 高斯分布 量子力学 考古 物理 历史 基因 化学 生物化学 业务 营销
作者
Borui Lyu,Yue Hu,Yu Wang
出处
期刊:ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering [American Society of Civil Engineers]
卷期号:9 (2) 被引量:29
标识
DOI:10.1061/ajrua6.rueng-935
摘要

With the rapid development of computing and digital technologies recently, three-dimensional (3D) subsurface models for accurate site characterization have received increasing attention, for example, with various data-driven methods developed for 3D subsurface modeling. This leads to a need for validating the 3D modeling results obtained from each method and comparing the performance of different methods in a fair and consistent manner. To address this need, a benchmarking study, which is often used in machine learning (ML), is presented in this study to compare the performance of different 3D subsurface modeling methods in four aspects, including accuracy, uncertainty, robustness, and computational efficiency. A suite of performance metrics is proposed for the four aspects above. Multiple sets of real cone penetration test (CPT) data are compiled in the benchmarking study for quantifying performance of 3D modeling methods using sparse measurements as input, a typical scenario in geotechnical practice. The benchmarking study is illustrated using an in-house software package called Analytics of Sparse Spatial Data based on Bayesian compressive sampling/sensing (ASSD-BCS), which can directly generate high-resolution 3D random field samples (RFSs) from sparse measurements. The evaluation results show that ASSD-BCS provides accurate estimates with quantified uncertainty from sparse measurements. In addition, ASSD-BCS exhibits remarkably high computational efficiency and performs robustly under different benchmarking cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助auggy采纳,获得10
刚刚
苏哑发布了新的文献求助10
刚刚
1秒前
打打应助QiQi采纳,获得10
1秒前
spark完成签到 ,获得积分10
2秒前
3秒前
Idumori发布了新的文献求助10
4秒前
何孟发布了新的文献求助10
4秒前
心灵美的电话完成签到 ,获得积分10
5秒前
科研通AI6应助坚定的半邪采纳,获得10
5秒前
小蘑菇应助小叶子采纳,获得10
9秒前
10秒前
烟花应助cassie采纳,获得10
11秒前
豫之完成签到 ,获得积分10
11秒前
uu发布了新的文献求助10
11秒前
11秒前
核桃应助布曲采纳,获得10
12秒前
14秒前
万能图书馆应助志豪采纳,获得10
14秒前
14秒前
月儿呗发布了新的文献求助10
15秒前
lyw完成签到 ,获得积分10
15秒前
展会恩完成签到,获得积分10
17秒前
uu完成签到,获得积分10
18秒前
投石问路发布了新的文献求助10
18秒前
19秒前
21秒前
21秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
上课了应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
auggy发布了新的文献求助10
22秒前
22秒前
12345完成签到,获得积分10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 9th 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4399452
求助须知:如何正确求助?哪些是违规求助? 3887496
关于积分的说明 12099522
捐赠科研通 3531688
什么是DOI,文献DOI怎么找? 1938080
邀请新用户注册赠送积分活动 979026
科研通“疑难数据库(出版商)”最低求助积分说明 876278