亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Numerical and experimental investigation of the dynamic mechanical behavior of precipitation-strengthed NiCoCrSi0.3C0.048 medium-entropy alloy

材料科学 体积分数 可塑性 有限元法 合金 机械 代表性基本卷 变形(气象学) 打滑(空气动力学) 复合材料 热力学 微观结构 物理
作者
Weiguang Zhao,Qi Wang,Dan Zhao,Jiajie Wang,Huaquan Fang,H.X. Yu,Tao Jin,Jingwen Qiu,S.G. Ma,Zhongfan Liu,Zhihua Wang
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:30: 5826-5841
标识
DOI:10.1016/j.jmrt.2024.04.245
摘要

An extended crystal plasticity model and an optimized neural network are established to investigate the mechanical behavior of CoCrNiSi0.3C0.048 Medium entropy alloy (MEA) with a three-level hierarchical precipitation structure under dynamic compressive deformation at a variety of ranges of strain rates. The interaction between the matrix and first-level precipitates is described by a presented hybrid representative volume element RVE model, involving the effects of volume fraction (Vf), radius and geometric distribution on heterogeneous deformation. Effects of second- and third-level precipitates are realized through the extended crystal plasticity constitutive model, reflecting the motion mechanism of dislocations near the precipitates in the form of initial slip resistance. Meanwhile, this study investigates the influence of the presence of primary precipitates on the initiation of slip systems within special grains with Goss or S orientations in the matrix. Additionally, it provides a more in-depth explanation of the underlying principles behind the suppression of Goss texture formation by the precipitates from the perspective of slip systems analysis. The changing of volume fractions affects flow stress evolution. Avoiding suffering from expensive computational consumption by the crystal plasticity finite element method, an artificial neural network model optimized through a genetic algorithm, is presented to predict stress-strain responses and texture evolution results under varying compression strain rates. A reliable dataset derived from crystal plasticity finite element models and experimental results is utilized to train, test, and validate the genetic algorithm-based artificial neural network model. This model demonstrates good prediction capability in dynamic mechanical behavior and texture evolution, showcasing the feasibility and efficacy of the proposed neural network model. Compared to the CPFEM method, neural network models can greatly improve computational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助持卿采纳,获得10
17秒前
JamesPei应助香菜张采纳,获得10
22秒前
无极微光应助白华苍松采纳,获得20
42秒前
46秒前
52秒前
香菜张发布了新的文献求助10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
优秀棒棒糖完成签到 ,获得积分10
1分钟前
Jonathan发布了新的文献求助10
1分钟前
1分钟前
Maomaojiangjiang完成签到,获得积分10
1分钟前
不会学习的小郭完成签到 ,获得积分10
1分钟前
1分钟前
Jonathan完成签到,获得积分10
1分钟前
蔡秋景完成签到,获得积分10
2分钟前
蔡秋景发布了新的文献求助10
2分钟前
苹果完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
完美世界应助科研进化中采纳,获得10
3分钟前
深情安青应助贝利亚采纳,获得10
3分钟前
3分钟前
3分钟前
持卿发布了新的文献求助10
3分钟前
4分钟前
mialabulula发布了新的文献求助10
4分钟前
执着艳完成签到 ,获得积分10
4分钟前
4分钟前
kuoping完成签到,获得积分0
4分钟前
5分钟前
5分钟前
隐形曼青应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
NexusExplorer应助科研进化中采纳,获得10
5分钟前
5分钟前
5分钟前
可可西里发布了新的文献求助10
5分钟前
乐乐应助可可西里采纳,获得10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529234
求助须知:如何正确求助?哪些是违规求助? 4618411
关于积分的说明 14562581
捐赠科研通 4557420
什么是DOI,文献DOI怎么找? 2497506
邀请新用户注册赠送积分活动 1477735
关于科研通互助平台的介绍 1449171