An intelligent open trading system for on-demand delivery facilitated by deep Q network based reinforcement learning

强化学习 共同价值拍卖 计算机科学 大都市区 增强学习 利润(经济学) 动态定价 运筹学 人工智能 业务 营销 工程类 经济 微观经济学 医学 病理
作者
Chaojie Guo,Lele Zhang,Russell G. Thompson‬‬,Greg Foliente,Xiaoshuai Peng
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:: 1-23 被引量:1
标识
DOI:10.1080/00207543.2024.2364349
摘要

On-demand delivery in urban areas has been growing rapidly in recent years. Nevertheless, on-demand delivery networks lack an efficient, sustainable, and environmentally friendly operative strategy. An open trading system equipped with on-line auctions provides an opportunity for increasing the efficiency of on-demand delivery systems. Reinforcement learning techniques that automate decision-making can facilitate the implementation of such complex and dynamic systems. This paper presents an on-line auction-based request trading platform embedded within an open trading system as a new scheme for carriers and shippers to trade on-demand delivery requests. The system is developed based on a multi-agent model, composed of carriers, shippers, and the on-line platform as autonomous agents. Deep Q network enabled reinforcement learning is used in the decision-making processes for the agents to optimise their behaviour in a dynamic environment. Numerical experiments conducted on the Melbourne metropolitan network demonstrate the effectiveness of the open trading system, which can provide benefits for all stakeholders involved in the on-demand delivery market as well as the entire system. The reinforcement learning enabled platform can gain more profit when there are more learning carriers. The results indicate that the intelligent open trading system with on-line auctions is a promising city logistics solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助单薄灵松采纳,获得10
1秒前
Jamie完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
爆米花应助222采纳,获得10
8秒前
乔木的养发布了新的文献求助10
8秒前
王军鹏发布了新的文献求助10
9秒前
开放的秋玲完成签到,获得积分10
10秒前
Hello应助nanigulai采纳,获得10
10秒前
仁和完成签到,获得积分10
12秒前
李荣航发布了新的文献求助10
14秒前
Allure完成签到,获得积分10
14秒前
15秒前
C7_关注了科研通微信公众号
16秒前
18秒前
18秒前
合适的荆完成签到,获得积分10
19秒前
小奥雄发布了新的文献求助10
19秒前
Owen应助王军鹏采纳,获得10
19秒前
20秒前
zh123完成签到,获得积分10
21秒前
21秒前
柒玥完成签到,获得积分10
22秒前
22秒前
温暖发布了新的文献求助10
24秒前
222发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
小奥雄完成签到,获得积分10
28秒前
科研通AI5应助沐晴采纳,获得10
28秒前
Allure发布了新的文献求助10
28秒前
28秒前
xjp发布了新的文献求助10
29秒前
30秒前
30秒前
32秒前
温暖完成签到,获得积分20
32秒前
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
求该文附件!是附件!Prevalence and Data Availability of Early Childhood Caries in 193 United Nations Countries, 2007–2017 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806853
求助须知:如何正确求助?哪些是违规求助? 3351618
关于积分的说明 10354910
捐赠科研通 3067447
什么是DOI,文献DOI怎么找? 1684519
邀请新用户注册赠送积分活动 809788
科研通“疑难数据库(出版商)”最低求助积分说明 765635