Machine Learning-Based Integrated Multiomics Characterization of Colorectal Cancer Reveals Distinctive Metabolic Signatures

结直肠癌 代谢组学 计算生物学 癌症 代谢物 特征选择 逻辑回归 代谢组 化学 生物信息学 肿瘤科 癌症研究 内科学 生物 人工智能 医学 计算机科学 生物化学
作者
Ran Zheng,Rui Su,Yusi Fan,Fan Xing,Keke Huang,Fei Yan,Huanwen Chen,Botong Liu,Laiping Fang,Yechao Du,Fengfeng Zhou,Daguang Wang,Shouhua Feng
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (21): 8772-8781
标识
DOI:10.1021/acs.analchem.4c01171
摘要

The metabolic signature identification of colorectal cancer is critical for its early diagnosis and therapeutic approaches that will significantly block cancer progression and improve patient survival. Here, we combined an untargeted metabolic analysis strategy based on internal extractive electrospray ionization mass spectrometry and the machine learning approach to analyze metabolites in 173 pairs of cancer samples and matched normal tissue samples to build robust metabolic signature models for diagnostic purposes. Screening and independent validation of metabolic signatures from colorectal cancers via machine learning methods (Logistic Regression_L1 for feature selection and eXtreme Gradient Boosting for classification) was performed to generate a panel of seven signatures with good diagnostic performance (the accuracy of 87.74%, sensitivity of 85.82%, and specificity of 89.66%). Moreover, seven signatures were evaluated according to their ability to distinguish between cancer and normal tissues, with the metabolic molecule PC (30:0) showing good diagnostic performance. In addition, genes associated with PC (30:0) were identified by multiomics analysis (combining metabolic data with transcriptomic data analysis) and our results showed that PC (30:0) could promote the proliferation of colorectal cancer cell SW480, revealing the correlation between genetic changes and metabolic dysregulation in cancer. Overall, our results reveal potential determinants affecting metabolite dysregulation, paving the way for a mechanistic understanding of altered tissue metabolites in colorectal cancer and design interventions for manipulating the levels of circulating metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Joshua完成签到,获得积分10
2秒前
研友_VZG7GZ应助DouBo采纳,获得10
2秒前
3秒前
英姑应助YaoHui采纳,获得10
3秒前
zho发布了新的文献求助10
3秒前
zxr发布了新的文献求助10
5秒前
汉堡包应助与山采纳,获得10
7秒前
Wang发布了新的文献求助10
7秒前
8秒前
10秒前
12秒前
楚舜华完成签到,获得积分10
13秒前
13秒前
姜夔完成签到,获得积分10
14秒前
14秒前
tkurds发布了新的文献求助10
15秒前
害羞的山晴完成签到,获得积分10
15秒前
orixero应助算了飞采纳,获得30
16秒前
16秒前
华仔应助言言采纳,获得10
17秒前
17秒前
18秒前
zfh1341发布了新的文献求助10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
19秒前
DouBo发布了新的文献求助10
19秒前
19秒前
在水一方应助Petrichor采纳,获得10
22秒前
与山发布了新的文献求助10
23秒前
虚幻花卷发布了新的文献求助10
23秒前
领导范儿应助eyou采纳,获得10
23秒前
ccc完成签到 ,获得积分10
24秒前
lizhiqian2024发布了新的文献求助30
24秒前
24秒前
潇洒的平松完成签到,获得积分10
25秒前
26秒前
深情安青应助鲜艳的新梅采纳,获得10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784451
求助须知:如何正确求助?哪些是违规求助? 3329582
关于积分的说明 10242685
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671561
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391