效力
药理学
淋巴细胞白血病
医学
白血病
化学
内科学
体外
生物化学
作者
Keli Lima,Frederico Lisboa Nogueira,Marcella Cipelli,Maria Fernanda Lopes Carvalho,Diego A. Pereira‐Martins,Wellington F Silva,Rita de Cássia Cavaglieri,Luciana Nardinelli,Aline de Medeiros Leal,Elvira Deolinda Rodrigues Pereira Velloso,Israel Bendit,Niels Olsen Saraiva Câmara,Jan Jacob Schuringa,João Agostinho Machado‐Neto,Eduardo Magalhães Rego
标识
DOI:10.1016/j.ejphar.2024.176723
摘要
Acute lymphoblastic leukemia (ALL), a complex malignancy, displays varying expression profiles of PIP4K2-related genes in adult patients. While PIP4K2A expression is elevated in ALL bone marrow cells compared to healthy bone marrow cells, PIP4K2B is downregulated, and PIP4K2C remains relatively unchanged. Despite the correlation between increased PIP4K2A expression and increased percentage of peripheral blood blasts, clinical outcomes do not strongly correlate with the expression of these genes. Here we investigated the therapeutic potential of three PIP4K2 inhibitors (THZ-P1-2, a131, and CC260) in ALL cell models. THZ-P1-2 emerges as the most effective inhibitor, inducing cell death and mitochondrial damage while reducing cell viability and metabolism significantly. Comparative analyses highlight the superior efficacy of THZ-P1-2 over a131 and CC260. Notably, THZ-P1-2 uniquely disrupts autophagic flux and inhibits the PI3K/AKT/mTOR pathway, indicating a distinct molecular mechanism. In summary, our findings elucidate the differential expression of PIP4K2-related genes in ALL and underscore the potential role of PIP4K2A in disease pathogenesis. The therapeutic promise of THZ-P1-2 in ALL treatment, along with its distinct effects on cell death mechanisms and signaling pathways, enriches our understanding of PIP4K2's involvement in ALL development and offers targeted therapy prospects.
科研通智能强力驱动
Strongly Powered by AbleSci AI