Quantification of antidepressants in oral fluid and plasma samples using microextraction by packed sorbent and analysis by gas chromatography-tandem mass spectrometry

色谱法 吸附剂 质谱法 化学 气相色谱/串联质谱法 气相色谱法 气相色谱-质谱法 串联质谱法 填充床 吸附 有机化学
作者
Sofia Soares,Tiago Rosado,Mário Barroso,Eugénia Gallardo
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:204: 111031-111031 被引量:3
标识
DOI:10.1016/j.microc.2024.111031
摘要

The consumption of antidepressants is extremely significant as they are a class of medications widely used in the treatment of numerous disorders and are therefore considered a public health problem throughout the world. The aim of this work was to develop and optimize two methodologies for the determination of selected antidepressants and metabolites (fluoxetine, venlafaxine, O-desmethylvenlafaxine, citalopram, sertraline, paroxetine), in 250 µL of sample (oral fluid and plasma) using microextraction by packed sorbent (MEPS) as the extraction technique and gas chromatography coupled to tandem mass spectrometry (GC–MS/MS) for analysis. The two methods were fully validated considering the internationally accepted criteria for bioanalytical procedures, presenting linearity within the studied range, with limits of quantification between 10 and 100 ng/mL, coefficients of determination (R2) of at least 0.99 and precision and accuracy with acceptable values of coefficients of variation and relative errors for all antidepressants in study and for both specimens. Recoveries ranged between approximately 12 and 93 % for oral fluid samples and between approximately 28 and 101 % for plasma samples. To our best knowledge, the described methods are the first to be reported using MEPS and GC–MS/MS for the identification of antidepressants in oral fluid and plasma samples, proving to be sensitive, simple, fast and capable of being applied in routine clinical and forensic toxicology scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
柯一一应助科研通管家采纳,获得10
1秒前
DJJ完成签到,获得积分10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
蛋白激酶发布了新的文献求助10
1秒前
DRYAN完成签到,获得积分10
1秒前
momo应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得30
2秒前
2秒前
ding应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
打工肥仔应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得20
2秒前
Akim应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
pluto应助科研通管家采纳,获得10
3秒前
鸣笛应助oliver1234采纳,获得30
3秒前
贝贝贝完成签到,获得积分10
4秒前
4秒前
搞对发布了新的文献求助10
4秒前
科研通AI2S应助tong77采纳,获得10
4秒前
4秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3912527
求助须知:如何正确求助?哪些是违规求助? 3457737
关于积分的说明 10897319
捐赠科研通 3184017
什么是DOI,文献DOI怎么找? 1760006
邀请新用户注册赠送积分活动 851258
科研通“疑难数据库(出版商)”最低求助积分说明 792586