已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a deep learning algorithm for detecting significant coronary artery stenosis in whole-heart coronary magnetic resonance angiography

医学 血管病学 冠状动脉造影 磁共振成像 心脏病学 内科学 狭窄 心脏磁共振 磁共振血管造影 动脉 放射科 心肌梗塞
作者
Masafumi Takafuji,Masaki Ishida,Takuma Shiomi,Ryohei Nakayama,Miyuko Fujita,Shintaro Yamaguchi,Yuzo Washiyama,Motonori Nagata,Yasutaka Ichikawa,R T Inoue Katsuhiro,Satoshi Nakamura,Hajime Sakuma
出处
期刊:Journal of Cardiovascular Magnetic Resonance [BioMed Central]
卷期号:: 101932-101932
标识
DOI:10.1016/j.jocmr.2025.101932
摘要

Whole-heart coronary magnetic resonance angiography (CMRA) enables noninvasive and accurate detection of coronary artery stenosis. Nevertheless, the visual interpretation of CMRA is constrained by the observer's experience, necessitating substantial training. The purposes of this study were to develop a deep learning (DL) algorithm using a deep convolutional neural network to accurately detect significant coronary artery stenosis in CMRA and to investigate the effectiveness of this DL algorithm as a tool for assisting in accurate detection of coronary artery stenosis. Nine hundred and fifty-one coronary segments from 75 patients who underwent both CMRA and invasive coronary angiography (ICA) were studied. Significant stenosis was defined as a reduction in luminal diameter of >50% on quantitative ICA. A DL algorithm was proposed to classify CMRA segments into those with and without significant stenosis. A 4-fold cross-validation method was used to train and test the DL algorithm. An observer study was then conducted using 40 segments with stenosis and 40 segments without stenosis. Three radiology experts and 3 radiology trainees independently rated the likelihood of the presence of stenosis in each coronary segment with a continuous scale from 0 to 1, first without the support of the DL algorithm, then using the DL algorithm. Significant stenosis was observed in 84 (8.8%) of the 951 coronary segments. Using the DL algorithm trained by the 4-fold cross-validation method, the area under the receiver operating characteristic curve (AUC) for the detection of segments with significant coronary artery stenosis was 0.890, with 83.3% sensitivity, 83.6% specificity and 83.6% accuracy. In the observer study, the average AUC of trainees was significantly improved using the DL algorithm (0.898) compared to that without the algorithm (0.821, p<0.001). The average AUC of experts tended to be higher with the DL algorithm (0.897), but not significantly different from that without the algorithm (0.879, p=0.082). We developed a DL algorithm offering high diagnostic accuracy for detecting significant coronary artery stenosis on CMRA. Our proposed DL algorithm appears to be an effective tool for assisting inexperienced observers to accurately detect coronary artery stenosis in whole-heart CMRA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
g123发布了新的文献求助10
1秒前
2秒前
橙子发布了新的文献求助10
2秒前
赤恩发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
Ddddd发布了新的文献求助10
5秒前
5秒前
美女完成签到 ,获得积分10
5秒前
123完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
伊力扎提发布了新的文献求助10
7秒前
wanci应助张达采纳,获得10
7秒前
8秒前
8秒前
8秒前
Owen应助机智的誉采纳,获得10
8秒前
酷波er应助阿狸贱贱采纳,获得10
12秒前
13秒前
14秒前
wss发布了新的文献求助10
15秒前
15秒前
澜生发布了新的文献求助10
15秒前
无糖的问题完成签到,获得积分20
16秒前
18秒前
18秒前
脆脆Shark发布了新的文献求助10
19秒前
fangyuan发布了新的文献求助10
20秒前
pan liu完成签到,获得积分10
20秒前
20秒前
mit完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
发现金属之美 260
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4580862
求助须知:如何正确求助?哪些是违规求助? 3998956
关于积分的说明 12380265
捐赠科研通 3673410
什么是DOI,文献DOI怎么找? 2024604
邀请新用户注册赠送积分活动 1058451
科研通“疑难数据库(出版商)”最低求助积分说明 945176