亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Harnessing Text Insights with Visual Alignment for Medical Image Segmentation

图像分割 计算机视觉 计算机科学 人工智能 医学影像学 分割 图像(数学) 可视化
作者
Qingjie Zeng,Huan Luo,Zilin Lu,Yutong Xie,Zhiyong Wang,Yanning Zhang,Yong Xia
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-1 被引量:1
标识
DOI:10.1109/tmi.2025.3601359
摘要

Pre-trained vision-language models (VLMs) and language models (LMs) have recently garnered significant attention due to their remarkable ability to represent textual concepts, opening up new avenues in vision tasks. In medical image segmentation, efforts are being made to integrate text and image data using VLMs and LMs. However, current text-enhanced approaches face several challenges. First, using separate pre-trained vision and text models to encode image and text data can result in semantic shifts. Second, while VLMs can establish the correspondence between visual and textual features when pre-trained on paired image-text data, this alignment often deteriorates during segmentation tasks due to misalignment between the text and vision components in ongoing learning. In this paper, we propose TeViA, a novel approach that seamlessly integrates with various vision and text models, irrespective of their pre-training relationships. This integration is achieved through a segmentation-specific text-to-vision alignment design, ensuring both information gain and semantic consistency. Specifically, for each training data, a foreground visual representation is extracted from the segmentation head and used to supervise projection layers, thereby adjusting the textual features to better contribute to the segmentation task. Additionally, a historic visual prototype is created by aggregating target semantics from all training data and is updated using a momentum-based manner. This prototype aims to enhance the visual representation of each data instance by establishing feature-level connections, which in turn refines the textual features. The superiority of TeViA is validated on five public datasets, exhibiting over 6% Dice improvements compared to vision-only methods. Code is available at: https://github.com/jgfiuuuu/TeViA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
大个应助九司采纳,获得10
7秒前
研友_R2D2发布了新的文献求助10
20秒前
21秒前
23秒前
32秒前
九司发布了新的文献求助10
37秒前
43秒前
研友_R2D2发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Dietetykza5zl发布了新的文献求助20
1分钟前
1分钟前
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
Dietetykza5zl完成签到,获得积分10
2分钟前
zss完成签到,获得积分20
2分钟前
2分钟前
2分钟前
zss发布了新的文献求助20
2分钟前
SciGPT应助zss采纳,获得30
2分钟前
3分钟前
whj完成签到 ,获得积分10
3分钟前
3分钟前
可怜的课题组补助完成签到,获得积分20
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
大个应助科研通管家采纳,获得10
3分钟前
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Ye完成签到,获得积分10
4分钟前
olekravchenko发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583243
关于积分的说明 14389081
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472860
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553