Predicting the risk of lung cancer using machine learning: A large study based on UK Biobank

医学 接收机工作特性 肺癌 逻辑回归 预测建模 机器学习 人工智能 布里氏评分 统计 肿瘤科 内科学 计算机科学 数学
作者
Siqi Zhang,Liangwei Yang,Weiya Xu,Yue Wang,Liyuan Han,Guofang Zhao,Ting Cai
出处
期刊:Medicine [Wolters Kluwer]
卷期号:103 (16): e37879-e37879
标识
DOI:10.1097/md.0000000000037879
摘要

In response to the high incidence and poor prognosis of lung cancer, this study tends to develop a generalizable lung-cancer prediction model by using machine learning to define high-risk groups and realize the early identification and prevention of lung cancer. We included 467,888 participants from UK Biobank, using lung cancer incidence as an outcome variable, including 49 previously known high-risk factors and less studied or unstudied predictors. We developed multivariate prediction models using multiple machine learning models, namely logistic regression, naïve Bayes, random forest, and extreme gradient boosting models. The performance of the models was evaluated by calculating the areas under their receiver operating characteristic curves, Brier loss, log loss, precision, recall, and F1 scores. The Shapley additive explanations interpreter was used to visualize the models. Three were ultimately 4299 cases of lung cancer that were diagnosed in our sample. The model containing all the predictors had good predictive power, and the extreme gradient boosting model had the best performance with an area under curve of 0.998. New important predictive factors for lung cancer were also identified, namely hip circumference, waist circumference, number of cigarettes previously smoked daily, neuroticism score, age, and forced expiratory volume in 1 second. The predictive model established by incorporating novel predictive factors can be of value in the early identification of lung cancer. It may be helpful in stratifying individuals and selecting those at higher risk for inclusion in screening programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助Sec采纳,获得10
2秒前
Sam发布了新的文献求助10
3秒前
tjpu发布了新的文献求助10
4秒前
11发布了新的文献求助10
5秒前
dennisysz发布了新的文献求助10
7秒前
科研强发布了新的文献求助10
8秒前
文献看不懂应助likunhi采纳,获得10
9秒前
半颗糖完成签到 ,获得积分10
12秒前
隐形曼青应助风中的元灵采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得30
13秒前
所所应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
燕子应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
深情安青应助wlei采纳,获得10
15秒前
Sam完成签到,获得积分10
16秒前
19秒前
20秒前
21秒前
科研通AI5应助汤冷霜采纳,获得10
21秒前
Yiyi完成签到,获得积分20
22秒前
玄妙发布了新的文献求助30
24秒前
yuaner发布了新的文献求助10
26秒前
情怀应助melody采纳,获得10
26秒前
29秒前
1111应助优雅小霜采纳,获得10
29秒前
wonder123完成签到,获得积分10
29秒前
30秒前
Lucas应助玄妙采纳,获得10
30秒前
zhouzhaoyi完成签到,获得积分10
32秒前
汤冷霜发布了新的文献求助10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777429
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211653
捐赠科研通 3038155
什么是DOI,文献DOI怎么找? 1667159
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103