根际
农业
粮食安全
人口
兴旺的
营养物
生物
生物技术
农林复合经营
农学
生态学
环境卫生
社会学
细菌
医学
遗传学
社会科学
作者
Amir Khan,Ajay Singh,Bharti Kukreti,Dilip Kumar Pandey,Viabhav Kumar Upadhayay,Rajeew Kumar,Reeta Goel
标识
DOI:10.1016/j.scitotenv.2024.172204
摘要
Agriculture stands as a thriving enterprise in India, serving as both the bedrock of economy and vital source of nutrition. In response to the escalating demands for high-quality food for swiftly expanding population, agricultural endeavors are extending their reach into the elevated terrains of the Himalayas, tapping into abundant resources for bolstering food production. Nonetheless, these Himalayan agro-ecosystems encounter persistent challenges, leading to crop losses. These challenges stem from a combination of factors including prevailing frigid temperatures, suboptimal farming practices, unpredictable climatic shifts, subdivided land ownership, and limited resources. While the utilization of chemical fertilizers has been embraced to enhance the quality of food output, genuine concerns have arisen due to the potential hazards they pose. Consequently, the present investigation was initiated with the objective of formulating environmentally friendly and cold-tolerant broad ranged bioinoculants tailored to enhance the production of Kidney bean while concurrently enriching its nutrient content across entire hilly regions. The outcomes of this study unveiled noteworthy advancements in kidney bean yield, registering a substantial increase ranging from 12.51 ± 2.39 % to 14.15 ± 0.83 % in regions of lower elevation (Jeolikote) and an even more remarkable surge ranging from 20.60 ± 3.03 % to 29.97 ± 5.02 % in higher elevated areas (Chakrata) compared to the control group. Furthermore, these cold-tolerant bioinoculants exhibited a dual advantage by fostering the enhancement of essential nutrients within the grains and fostering a positive influence on the diversity and abundance of microbial life in the rhizosphere. As a result, to effectively tackle the issues associated with chemical fertilizers and to achieve sustainable improvements in both the yield and nutrient composition of kidney bean across varying elevations, the adoption of cold-tolerant Enterobacter hormaechei CHM16, and Pantoea agglomerans HRM 23, including the consortium, presents a promising avenue. Additionally, this study has contributed significant insights-into the role of organic acids like oxalic acid in the solubilization of nutrients, thereby expanding the existing knowledge in this specialized field.
科研通智能强力驱动
Strongly Powered by AbleSci AI