亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-Driven Advances in Low-Dose Imaging and Enhancement—A Review

医学影像学 工作流程 图像质量 医学物理学 透视 卷积神经网络 计算机科学 磁共振成像 人工智能 医学 放射科 数据库 图像(数学)
作者
Aanuoluwapo Clement David-Olawade,David B. Olawade,Laura Vanderbloemen,Oluwayomi B. Rotifa,Sandra Chinaza Fidelis,Eghosasere Egbon,Akwaowo Owoidighe Akpan,Sola Adeleke,Aruni Ghose,Stergios Boussios
出处
期刊:Diagnostics [Multidisciplinary Digital Publishing Institute]
卷期号:15 (6): 689-689 被引量:9
标识
DOI:10.3390/diagnostics15060689
摘要

The widespread use of medical imaging techniques such as X-rays and computed tomography (CT) has raised significant concerns regarding ionizing radiation exposure, particularly among vulnerable populations requiring frequent imaging. Achieving a balance between high-quality diagnostic imaging and minimizing radiation exposure remains a fundamental challenge in radiology. Artificial intelligence (AI) has emerged as a transformative solution, enabling low-dose imaging protocols that enhance image quality while significantly reducing radiation doses. This review explores the role of AI-assisted low-dose imaging, particularly in CT, X-ray, and magnetic resonance imaging (MRI), highlighting advancements in deep learning models, convolutional neural networks (CNNs), and other AI-based approaches. These technologies have demonstrated substantial improvements in noise reduction, artifact removal, and real-time optimization of imaging parameters, thereby enhancing diagnostic accuracy while mitigating radiation risks. Additionally, AI has contributed to improved radiology workflow efficiency and cost reduction by minimizing the need for repeat scans. The review also discusses emerging directions in AI-driven medical imaging, including hybrid AI systems that integrate post-processing with real-time data acquisition, personalized imaging protocols tailored to patient characteristics, and the expansion of AI applications to fluoroscopy and positron emission tomography (PET). However, challenges such as model generalizability, regulatory constraints, ethical considerations, and computational requirements must be addressed to facilitate broader clinical adoption. AI-driven low-dose imaging has the potential to revolutionize radiology by enhancing patient safety, optimizing imaging quality, and improving healthcare efficiency, paving the way for a more advanced and sustainable future in medical imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺颂时祺完成签到 ,获得积分10
8秒前
20秒前
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得30
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
可爱的函函应助ysl采纳,获得10
1分钟前
超快乐完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
monica发布了新的文献求助10
3分钟前
4分钟前
充电宝应助ceeray23采纳,获得20
4分钟前
打打应助Lh采纳,获得10
4分钟前
5分钟前
Lh发布了新的文献求助10
5分钟前
MiaMia应助科研通管家采纳,获得10
5分钟前
CK完成签到 ,获得积分10
5分钟前
深情安青应助漂流的云朵采纳,获得10
5分钟前
Zx_1993完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
Lh完成签到,获得积分10
6分钟前
6分钟前
ysl发布了新的文献求助10
6分钟前
从容的水壶完成签到 ,获得积分10
7分钟前
Virtual应助科研通管家采纳,获得20
7分钟前
7分钟前
cc发布了新的文献求助10
7分钟前
文欣完成签到 ,获得积分0
8分钟前
cc完成签到,获得积分10
8分钟前
Jasper应助可靠的雪碧采纳,获得30
8分钟前
9分钟前
SUN发布了新的文献求助10
9分钟前
上官若男应助科研通管家采纳,获得10
9分钟前
SUN完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4443865
求助须知:如何正确求助?哪些是违规求助? 3914714
关于积分的说明 12154892
捐赠科研通 3563103
什么是DOI,文献DOI怎么找? 1956104
邀请新用户注册赠送积分活动 995802
科研通“疑难数据库(出版商)”最低求助积分说明 891110