Identification of lipid metabolism related immune markers in atherosclerosis through machine learning and experimental analysis

免疫系统 脂质代谢 鉴定(生物学) 免疫学 计算生物学 医学 生物 生物信息学 生物化学 植物
作者
Hang Chen,Biao Wu,Kun‐Liang Guan,Liang Chen,Kevin Chai,Ming Ying,Dazhi Li,Weicheng Zhao
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:16
标识
DOI:10.3389/fimmu.2025.1549150
摘要

Background Atherosclerosis is a significant contributor to cardiovascular disease, and conventional diagnostic methods frequently fall short in the timely and accurate detection of early-stage atherosclerosis. Abnormal lipid metabolism plays a critical role in the development of atherosclerosis. Consequently, the identification of new diagnostic markers is essential for the precise diagnosis of this condition. Method The datasets related to atherosclerosis utilized in this research were obtained from the GEO database (GSE2470, GSE24495, GSE100927 and GSE43292). The ssGSEA technique was first utilized to assess lipid metabolism scores in samples affected by atherosclerosis, thereby aiding in the discovery of important regulatory genes linked to lipid metabolism via WGCNA. Following this, differential expression analysis and functional evaluations were carried out, after which various machine learning approaches were employed to determine significant diagnostic genes for atherosclerosis. A diagnostic model was then developed and validated through several machine learning algorithms. Furthermore, molecular docking studies were conducted to analyze the binding affinity of these key markers with therapeutic agents for atherosclerosis. The ssGSEA technique was also used to measure immune cell scores in atherosclerotic samples, aiding the exploration of the connection between key diagnostic markers and immune cells. Finally, the expression variations of the identified pivotal genes were confirmed through experimental validation. Result WGCNA identified 302 lipid metabolism-related genes in atherosclerotic samples, and functional analysis revealed that these genes are associated with multiple immune pathways. Through further differential analysis and screening using machine learning algorithms, APLNR, PCDH12, PODXL, SLC40A1, TM4SF18, and TNFRSF25 were identified as key diagnostic genes for atherosclerosis. The diagnostic model we constructed was confirmed to predict the occurrence of atherosclerosis with high accuracy, and molecular docking studies indicated that these six key diagnostic genes have potential as drug targets. Additionally, the ssGSEA algorithm further validated the association of these diagnostic genes with various immune cells. Finally, the expression levels of these six genes were experimentally confirmed. Conclusion Our study introduces novel lipid metabolism-related diagnostic markers for atherosclerosis and emphasizes their potential as immune-related drug targets. This research provides a valuable approach for the predictive diagnosis and targeted therapy of atherosclerosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助如烈火如止水采纳,获得10
1秒前
Hayat发布了新的文献求助10
3秒前
feng_qi001完成签到,获得积分10
4秒前
6秒前
猕猴桃猴发布了新的文献求助10
6秒前
凤兮完成签到 ,获得积分10
7秒前
坤坤完成签到,获得积分10
8秒前
9秒前
10秒前
hh哈哈完成签到,获得积分10
11秒前
12秒前
番茄炒蛋发布了新的文献求助200
13秒前
RATHER发布了新的文献求助10
16秒前
小李完成签到 ,获得积分20
21秒前
21秒前
21秒前
加菲丰丰完成签到,获得积分0
24秒前
上官枫发布了新的文献求助10
26秒前
艾克发布了新的文献求助10
29秒前
猕猴桃猴完成签到,获得积分10
29秒前
LXinY完成签到 ,获得积分10
30秒前
30秒前
32秒前
春樹暮雲完成签到 ,获得积分10
33秒前
合适的语雪完成签到,获得积分10
34秒前
36秒前
上官枫完成签到,获得积分10
36秒前
哈哈发布了新的文献求助10
37秒前
37秒前
木马上市完成签到,获得积分10
41秒前
2019kyxb发布了新的文献求助10
43秒前
AAAADiao发布了新的文献求助10
43秒前
48秒前
49秒前
2019kyxb完成签到,获得积分10
50秒前
科研助手发布了新的文献求助10
52秒前
万能图书馆应助RATHER采纳,获得10
53秒前
54秒前
58秒前
谨慎秋珊完成签到 ,获得积分10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776482
求助须知:如何正确求助?哪些是违规求助? 3321990
关于积分的说明 10208326
捐赠科研通 3037279
什么是DOI,文献DOI怎么找? 1666628
邀请新用户注册赠送积分活动 797594
科研通“疑难数据库(出版商)”最低求助积分说明 757872