已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MDD2DG-IRA: Multivariate Degree Distribution to Dynamic Graph With Inter-Channel Relevance Attention Mechanism for Multi-Channel Myocardial Infarction ECG Analysis

多元统计 计算机科学 心肌梗塞 频道(广播) 图形 机制(生物学) 多元分析 人工智能 医学 心脏病学 理论计算机科学 计算机网络 机器学习 物理 量子力学
作者
Xiaodong Yang,Guangkang Jiang,Zhu Zhengping,Dandan Wu,Aijun He,Jun Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2025.3554309
摘要

We introduced a novel methodology Multivariate Degree Distribution to Dynamic Graph (MDD2DG) with Inter-channel Relevance Attention (IRA) mechanism to analyze multi-channel Electrocardiogram (ECG) signals and explore signal connections across different channels. Our methodology comprises three main steps. First, multi-channel cardiac signals are transformed into multi-channel visual graphs to extract crucial degree distribution features. Then, degree distributions are mapped into dynamic graphs using a neural network with an IRA mechanism. After that, critical features are extracted within dynamic graphs utilizing a Graph Convolutional Neural Networks (GCNNs), and classification is subsequently performed using a multilayer perceptron. In this model, a method of multi-scale position embedding was introduced, which significantly enhanced the processing efficiency of the model by providing a simpler yet sufficiently effective feature representation. Compared to traditional complex network methods, our approach replaces fixed formula-calculated features with dynamic graph models, resulting in improved recognition accuracy. In the experiments, we achieved an impressive 99.94% classification accuracy for distinguishing ECG signals from the five distinct locations (AMI, ASMI, ALMI, IMI and ILMI) with myocardial infarction (MI) as well as those of the healthy controls (HC). This work contributes to the analysis of complex physiological signals in the field of multi-channel ECG sequence, and provides a robust approach with promising implications for improving clinical medicine and the early detection of cardiac diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助疯狂的书竹采纳,获得30
5秒前
大模型应助ABCDE采纳,获得30
6秒前
7秒前
小蘑菇应助徐徐采纳,获得10
7秒前
赘婿应助杨惊蛰采纳,获得10
10秒前
Owen应助来篇nature采纳,获得10
10秒前
海鸥应助漫漫采纳,获得10
11秒前
郑总完成签到 ,获得积分10
12秒前
12秒前
yaolei完成签到,获得积分10
14秒前
ZBB完成签到 ,获得积分10
14秒前
波比冰苏打完成签到,获得积分10
16秒前
成德发布了新的文献求助10
18秒前
不想改格式了完成签到,获得积分10
18秒前
香蕉觅云应助小白采纳,获得10
22秒前
zyj完成签到,获得积分10
22秒前
神仙渔完成签到,获得积分10
27秒前
陈全刚完成签到,获得积分10
28秒前
31秒前
33秒前
36秒前
量子星尘发布了新的文献求助10
37秒前
斯文败类应助phil采纳,获得10
38秒前
成德发布了新的文献求助10
40秒前
42秒前
小白发布了新的文献求助10
42秒前
Orange应助chi采纳,获得10
42秒前
43秒前
cyhhhh发布了新的文献求助10
46秒前
47秒前
充电宝应助phil采纳,获得10
48秒前
苏遇完成签到,获得积分10
49秒前
大大完成签到,获得积分10
49秒前
习习完成签到 ,获得积分10
50秒前
mzf发布了新的文献求助10
52秒前
wswddtd完成签到,获得积分10
52秒前
马华化完成签到,获得积分0
52秒前
善学以致用应助zzz采纳,获得10
52秒前
我是老大应助优雅含灵采纳,获得10
55秒前
55秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4302817
求助须知:如何正确求助?哪些是违规求助? 3826619
关于积分的说明 11978696
捐赠科研通 3467586
什么是DOI,文献DOI怎么找? 1901860
邀请新用户注册赠送积分活动 949534
科研通“疑难数据库(出版商)”最低求助积分说明 851584