Zig-RiR: Zigzag RWKV-in-RWKV for Efficient Medical Image Segmentation

图像分割 计算机视觉 人工智能 分割 之字形的 图像(数学) 计算机科学 尺度空间分割 数学 几何学
作者
Tianxiang Chen,X. R. Zhou,Zhentao Tan,Yue Wu,Ziyang Wang,Zi Ye,Tao Gong,Qi Chu,Nenghai Yu,Le Lü
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3561797
摘要

Medical image segmentation has made significant strides with the development of basic models. Specifically, models that combine CNNs with transformers can successfully extract both local and global features. However, these models inherit the transformer's quadratic computational complexity, limiting their efficiency. Inspired by the recent Receptance Weighted Key Value (RWKV) model, which achieves linear complexity for long-distance modeling, we explore its potential for medical image segmentation. While directly applying vision-RWKV yields sub-optimal results due to insufficient local feature exploration and disrupted spatial continuity, we propose a novel nested structure, Zigzag RWKV-in-RWKV (Zig-RiR), to address these issues. It consists of Outer and Inner RWKV blocks to adeptly capture both global and local features without disrupting spatial continuity. We treat local patches as "visual sentences" and use the Outer Zig-RWKV to explore global information. Then, we decompose each sentence into sub-patches ("visual words") and use the Inner Zig-RWKV to further explore local information among words, at negligible computational cost. We also introduce a Zigzag-WKV attention mechanism to ensure spatial continuity during token scanning. By aggregating visual word and sentence features, our Zig-RiR can effectively explore both global and local information while preserving spatial continuity. Experiments on four medical image segmentation datasets of both 2D and 3D modalities demonstrate the superior accuracy and efficiency of our method, outperforming the state-of-the-art method 14.4 times in speed and reducing GPU memory usage by 89.5% when testing on 1024 × 1024 high-resolution medical images. Our code is available at https://github.com/txchen-USTC/Zig-RiR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
搜集达人应助清脆的绮梅采纳,获得10
1秒前
1秒前
1秒前
东皇太憨完成签到,获得积分10
4秒前
1WSQARFGRDSX发布了新的文献求助10
5秒前
慧1111111应助滕哲采纳,获得10
5秒前
啦啦啦完成签到,获得积分10
6秒前
医学生Mavis完成签到,获得积分10
8秒前
11111完成签到,获得积分20
9秒前
噢锦完成签到,获得积分10
11秒前
11秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
bowl完成签到 ,获得积分10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
iNk应助科研通管家采纳,获得20
13秒前
烟花应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
13秒前
b15966013195应助科研通管家采纳,获得10
13秒前
13秒前
小马甲应助科研通管家采纳,获得30
13秒前
15秒前
15秒前
15秒前
11111关注了科研通微信公众号
15秒前
隐形曼青应助风中小夏采纳,获得10
16秒前
牙结石雕刻自由女神关注了科研通微信公众号
16秒前
桐桐应助李永浩采纳,获得10
16秒前
17秒前
Binbin发布了新的文献求助10
18秒前
危机的酒窝完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
云竹丶完成签到,获得积分10
21秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
basics of anesthesia, 7th edition 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915841
求助须知:如何正确求助?哪些是违规求助? 3461430
关于积分的说明 10916898
捐赠科研通 3188244
什么是DOI,文献DOI怎么找? 1762520
邀请新用户注册赠送积分活动 852894
科研通“疑难数据库(出版商)”最低求助积分说明 793613