Zig-RiR: Zigzag RWKV-in-RWKV for Efficient Medical Image Segmentation

图像分割 计算机视觉 人工智能 分割 之字形的 图像(数学) 计算机科学 尺度空间分割 数学 几何学
作者
Tianxiang Chen,X. R. Zhou,Zhentao Tan,Yue Wu,Ziyang Wang,Zi Ye,Tao Gong,Qi Chu,Nenghai Yu,Le Lü
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3561797
摘要

Medical image segmentation has made significant strides with the development of basic models. Specifically, models that combine CNNs with transformers can successfully extract both local and global features. However, these models inherit the transformer's quadratic computational complexity, limiting their efficiency. Inspired by the recent Receptance Weighted Key Value (RWKV) model, which achieves linear complexity for long-distance modeling, we explore its potential for medical image segmentation. While directly applying vision-RWKV yields sub-optimal results due to insufficient local feature exploration and disrupted spatial continuity, we propose a novel nested structure, Zigzag RWKV-in-RWKV (Zig-RiR), to address these issues. It consists of Outer and Inner RWKV blocks to adeptly capture both global and local features without disrupting spatial continuity. We treat local patches as "visual sentences" and use the Outer Zig-RWKV to explore global information. Then, we decompose each sentence into sub-patches ("visual words") and use the Inner Zig-RWKV to further explore local information among words, at negligible computational cost. We also introduce a Zigzag-WKV attention mechanism to ensure spatial continuity during token scanning. By aggregating visual word and sentence features, our Zig-RiR can effectively explore both global and local information while preserving spatial continuity. Experiments on four medical image segmentation datasets of both 2D and 3D modalities demonstrate the superior accuracy and efficiency of our method, outperforming the state-of-the-art method 14.4 times in speed and reducing GPU memory usage by 89.5% when testing on 1024 × 1024 high-resolution medical images. Our code is available at https://github.com/txchen-USTC/Zig-RiR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
勤奋的如松完成签到,获得积分10
1秒前
1秒前
ZHou发布了新的文献求助10
1秒前
YUUNEEQUE完成签到,获得积分10
2秒前
chen完成签到,获得积分10
2秒前
Landau发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
疯狂的迪子完成签到 ,获得积分10
4秒前
pluto应助Ryan采纳,获得50
4秒前
chen发布了新的文献求助10
5秒前
开放的初曼完成签到,获得积分20
7秒前
大憨憨完成签到 ,获得积分10
7秒前
鞘皮发布了新的文献求助10
8秒前
CCY777发布了新的文献求助10
8秒前
范月月完成签到 ,获得积分10
8秒前
快乐小狗完成签到 ,获得积分10
9秒前
啵妞完成签到 ,获得积分10
9秒前
dyd发布了新的文献求助30
9秒前
谢傲安发布了新的文献求助10
9秒前
qqy完成签到,获得积分10
12秒前
gsj完成签到 ,获得积分10
13秒前
小天狼星完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助Leyan采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
17秒前
谢傲安完成签到,获得积分10
22秒前
莫妮卡完成签到,获得积分10
23秒前
Kora完成签到,获得积分10
23秒前
26秒前
打打应助人衣采纳,获得10
26秒前
27秒前
为你钟情完成签到 ,获得积分10
27秒前
xiaopan9083完成签到,获得积分10
29秒前
方圆学术完成签到,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751