Zig-RiR: Zigzag RWKV-in-RWKV for Efficient Medical Image Segmentation

图像分割 计算机视觉 人工智能 分割 之字形的 图像(数学) 计算机科学 尺度空间分割 数学 几何学
作者
Tianxiang Chen,X. R. Zhou,Zhentao Tan,Yue Wu,Ziyang Wang,Zi Ye,Tao Gong,Qi Chu,Nenghai Yu,Le Lü
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (8): 3245-3257 被引量:1
标识
DOI:10.1109/tmi.2025.3561797
摘要

Medical image segmentation has made significant strides with the development of basic models. Specifically, models that combine CNNs with transformers can successfully extract both local and global features. However, these models inherit the transformer's quadratic computational complexity, limiting their efficiency. Inspired by the recent Receptance Weighted Key Value (RWKV) model, which achieves linear complexity for long-distance modeling, we explore its potential for medical image segmentation. While directly applying vision-RWKV yields suboptimal results due to insufficient local feature exploration and disrupted spatial continuity, we propose a novel nested structure, Zigzag RWKV-in-RWKV (Zig-RiR), to address these issues. It consists of Outer and Inner RWKV blocks to adeptly capture both global and local features without disrupting spatial continuity. We treat local patches as "visual sentences" and use the Outer Zig-RWKV to explore global information. Then, we decompose each sentence into sub-patches ("visual words") and use the Inner Zig-RWKV to further explore local information among words, at negligible computational cost. We also introduce a Zigzag-WKV attention mechanism to ensure spatial continuity during token scanning. By aggregating visual word and sentence features, our Zig-RiR can effectively explore both global and local information while preserving spatial continuity. Experiments on four medical image segmentation datasets of both 2D and 3D modalities demonstrate the superior accuracy and efficiency of our method, outperforming the state-of-the-art method 14.4 times in speed and reducing GPU memory usage by 89.5% when testing on ${1024} \times {1024}$ high-resolution medical images. Our code is available at https://github.com/txchen-USTC/Zig-RiR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
edtaa完成签到 ,获得积分10
刚刚
刚刚
苹果树下的懒洋洋完成签到 ,获得积分10
2秒前
CodeCraft应助浅忆晨曦采纳,获得10
3秒前
英吉利25发布了新的文献求助30
4秒前
沈智瀚完成签到,获得积分20
5秒前
李爱国应助backerly采纳,获得10
7秒前
Shell完成签到 ,获得积分10
7秒前
aaa发布了新的文献求助10
8秒前
脑洞疼应助马绍清采纳,获得10
8秒前
11秒前
ZOLEI完成签到,获得积分10
14秒前
月亮发布了新的文献求助10
14秒前
yml完成签到,获得积分10
15秒前
樊少鹏发布了新的文献求助10
16秒前
abcd_1067完成签到,获得积分10
18秒前
JeKing完成签到,获得积分10
19秒前
景行Elysia完成签到 ,获得积分10
20秒前
此念完成签到,获得积分10
21秒前
21秒前
22秒前
小铭完成签到,获得积分10
22秒前
24秒前
pwy完成签到,获得积分10
24秒前
24秒前
快冲冲冲完成签到 ,获得积分10
25秒前
科目三应助淡写采纳,获得10
25秒前
25秒前
123456发布了新的文献求助10
26秒前
浅忆晨曦发布了新的文献求助10
27秒前
Arrebol发布了新的文献求助10
29秒前
kingkong发布了新的文献求助10
29秒前
墩墩完成签到,获得积分10
30秒前
34秒前
12完成签到,获得积分10
34秒前
米奇妙妙屋完成签到,获得积分10
34秒前
山城小辣椒完成签到,获得积分10
35秒前
35秒前
晚晚发布了新的文献求助10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306363
求助须知:如何正确求助?哪些是违规求助? 4452212
关于积分的说明 13854048
捐赠科研通 4339659
什么是DOI,文献DOI怎么找? 2382796
邀请新用户注册赠送积分活动 1377669
关于科研通互助平台的介绍 1345320