Zig-RiR: Zigzag RWKV-in-RWKV for Efficient Medical Image Segmentation

图像分割 计算机视觉 人工智能 分割 之字形的 图像(数学) 计算机科学 尺度空间分割 数学 几何学
作者
Tianxiang Chen,X. R. Zhou,Zhentao Tan,Yue Wu,Ziyang Wang,Zi Ye,Tao Gong,Qi Chu,Nenghai Yu,Le Lü
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2025.3561797
摘要

Medical image segmentation has made significant strides with the development of basic models. Specifically, models that combine CNNs with transformers can successfully extract both local and global features. However, these models inherit the transformer's quadratic computational complexity, limiting their efficiency. Inspired by the recent Receptance Weighted Key Value (RWKV) model, which achieves linear complexity for long-distance modeling, we explore its potential for medical image segmentation. While directly applying vision-RWKV yields sub-optimal results due to insufficient local feature exploration and disrupted spatial continuity, we propose a novel nested structure, Zigzag RWKV-in-RWKV (Zig-RiR), to address these issues. It consists of Outer and Inner RWKV blocks to adeptly capture both global and local features without disrupting spatial continuity. We treat local patches as "visual sentences" and use the Outer Zig-RWKV to explore global information. Then, we decompose each sentence into sub-patches ("visual words") and use the Inner Zig-RWKV to further explore local information among words, at negligible computational cost. We also introduce a Zigzag-WKV attention mechanism to ensure spatial continuity during token scanning. By aggregating visual word and sentence features, our Zig-RiR can effectively explore both global and local information while preserving spatial continuity. Experiments on four medical image segmentation datasets of both 2D and 3D modalities demonstrate the superior accuracy and efficiency of our method, outperforming the state-of-the-art method 14.4 times in speed and reducing GPU memory usage by 89.5% when testing on 1024 × 1024 high-resolution medical images. Our code is available at https://github.com/txchen-USTC/Zig-RiR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll完成签到,获得积分10
1秒前
zj完成签到,获得积分10
1秒前
领导范儿应助格格萧采纳,获得10
2秒前
5秒前
hellow完成签到,获得积分10
7秒前
bkagyin应助小小采纳,获得10
7秒前
9秒前
小二应助up采纳,获得30
10秒前
yangyangyang发布了新的文献求助20
10秒前
嗯哼发布了新的文献求助100
10秒前
a7489420发布了新的文献求助10
11秒前
12秒前
学大西完成签到,获得积分10
12秒前
linlin发布了新的文献求助10
13秒前
13秒前
乐正熠彤发布了新的文献求助10
15秒前
15秒前
16秒前
wzgkeyantong发布了新的文献求助10
17秒前
田七的茄子完成签到,获得积分10
18秒前
hihi发布了新的文献求助10
18秒前
贺兰发布了新的文献求助10
18秒前
a7489420完成签到,获得积分20
21秒前
22秒前
22秒前
WANG发布了新的文献求助10
22秒前
C&D完成签到,获得积分10
22秒前
23秒前
关耳完成签到,获得积分20
23秒前
研友_VZG7GZ应助爱笑的枫叶采纳,获得10
24秒前
24秒前
Wrong完成签到,获得积分10
24秒前
Betty发布了新的文献求助10
25秒前
27秒前
关耳发布了新的文献求助10
28秒前
爱笑的阿满应助乐正熠彤采纳,获得10
29秒前
研友_Zza3qn完成签到,获得积分10
30秒前
30秒前
hihi完成签到,获得积分10
30秒前
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4153278
求助须知:如何正确求助?哪些是违规求助? 3689253
关于积分的说明 11654440
捐赠科研通 3381686
什么是DOI,文献DOI怎么找? 1855766
邀请新用户注册赠送积分活动 917465
科研通“疑难数据库(出版商)”最低求助积分说明 831029