已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Single‐shot T2 mapping via multi‐slice information sharing based on switching modulation patterns multiple overlapping‐echo detachment imaging

背景(考古学) 加权 计算机科学 Echo(通信协议) 调制(音乐) 磁共振成像 图像分辨率 人工智能 成像体模 相似性(几何) 计算机视觉 模式识别(心理学) 物理 光学 图像(数学) 声学 医学 计算机网络 古生物学 放射科 生物
作者
Chenyang Dai,Qinqin Yang,Jianjun Zhou,Liuhong Zhu,Liangjie Lin,Jiazheng Wang,Congbo Cai,Shuhui Cai
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17778
摘要

Quantitative magnetic resonance imaging (qMRI) offers reliable biomarkers in clinic. Nevertheless, most qMRI methods are time-consuming and sensitive to motion. Single-shot multiple overlapping-echo detachment (MOLED) magnetic resonance imaging can deliver robust T2 mapping in about 100 ms with high motion tolerance. However, its spatial resolution is relatively low due to the limitations of signal-to-noise ratio (SNR) and echo-train length. At the mean time, the number of echoes with different evolution times collected is usually limited, which is not conducive to T2 mapping in high accuracy. To propose a novel method to improve the spatial resolution and quantification accuracy of single-shot MOLED T2 mapping. A new method called switching modulation patterns multiple overlapping-echo detachment imaging (SWP-MOLED) was designed for multi-slice information sharing via switching the k-space modulation pattern of MOLED imaging. In the SWP-MOLED pulse sequence, three different k-space modulation patterns were devised, making the 12 main echoes of any three adjacent slices symmetrically and uniformly distributed around their k-space centers to obtain diverse contrast weighting information. A multi-slice fusion three-dimensional spatial attention context-guided U-Net was trained with 3000/7000 synthetic data with geometric/brain patterns to efficiently learn the mapping relationship between SWP-MOLED signals and T2 maps. Experiments on numerical human brains, a phantom containing MnCl2 solutions with different concentrations, three healthy volunteers, and three patients diagnosed with meningioma or glioblastoma were performed. The effectiveness of the new method was quantitatively assessed using the structure similarity index measure (SSIM) and root mean square error (RMSE). Multiple statistical analyses were utilized to evaluate the accuracy and significance of the method, including linear regression, Bland-Altman analysis, Mann-Whitney test, Wilcoxon signed rank test, and Friedman test with Bonferroni correction, with the p-value significance level of 0.05. The results from numerical human brain (The average SSIM of the reconstructed T2 maps was 0.9742/0.9782/0.9826 for MOLED/MS-MOLED/SWP-MOLED) and phantom (The slope of linear fitting of the predicted T2 values vs. reference values was 0.9934/9942/0.9972 for MOLED/MS-MOLED/SWP-MOLED) demonstrated that more accurate T2 maps were delivered by the proposed method, closely resembling the reference maps. From the Friedman test performed on the results of the test data set after the multi-comparison correction, we found that the pairwise performance differences among different reconstruction networks were all statistically significant (p < 0.001). In healthy human brain experiments, the comparison of SWP-MOLED reconstruction with reference measurements indicated no significant difference (p = 0.4504). SWP-MOLED was quite repeatable (average coefficient of variation [CV] = 4.17%) and was not corrupted by motion (average CV = 7.49%). Moreover, the proposed method exhibited clearer lesion contours in clinical cases, demonstrating the potential of the proposed method for clinical applications. SWP-MOLED can efficiently exploit the structural similarity and parameter-weighted information diversity of adjacent slices to improve the spatial resolution and quantification accuracy of MOLED T2 mapping. It also exhibits excellent motion robustness. This technique would extend the application of MOLED imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
广东第一深情完成签到,获得积分10
5秒前
情怀应助sangsang采纳,获得10
6秒前
LK完成签到,获得积分10
9秒前
GGBoy完成签到 ,获得积分10
11秒前
003发布了新的文献求助20
12秒前
123完成签到,获得积分10
13秒前
南风完成签到,获得积分10
16秒前
21秒前
23秒前
往复发布了新的文献求助10
25秒前
郦如花发布了新的文献求助10
27秒前
丘比特应助围城采纳,获得10
29秒前
红绿蓝完成签到 ,获得积分10
30秒前
ding应助zfczfc采纳,获得10
32秒前
南宫小霜完成签到 ,获得积分10
32秒前
35秒前
沙脑完成签到 ,获得积分10
37秒前
嘿嘿江完成签到 ,获得积分10
37秒前
kaka发布了新的文献求助10
39秒前
犹豫的碧灵完成签到,获得积分10
41秒前
OK了啦发布了新的文献求助30
41秒前
OK了啦完成签到,获得积分20
53秒前
猪猪hero应助天真千易采纳,获得50
54秒前
猪猪hero应助天真千易采纳,获得50
54秒前
56秒前
lintong应助kaka采纳,获得30
1分钟前
NexusExplorer应助kaka采纳,获得30
1分钟前
一天一篇sci完成签到,获得积分10
1分钟前
十一发布了新的文献求助10
1分钟前
1分钟前
多多洛完成签到,获得积分20
1分钟前
陆东发布了新的文献求助10
1分钟前
Summer完成签到,获得积分10
1分钟前
叶子完成签到 ,获得积分10
1分钟前
英姑应助shenlee采纳,获得10
1分钟前
科目三应助003采纳,获得20
1分钟前
无花果应助多多洛采纳,获得10
1分钟前
wanci应助yuanyiyi采纳,获得10
1分钟前
fei完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830364
求助须知:如何正确求助?哪些是违规求助? 3372779
关于积分的说明 10475199
捐赠科研通 3092539
什么是DOI,文献DOI怎么找? 1702118
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087