Challenges in AI-driven Biomedical Multimodal Data Fusion and Analysis

计算机科学 融合 人工智能 计算生物学 生物 哲学 语言学
作者
Junwei Liu,Xiaoping Cen,Chenxin Yi,Feng-ao Wang,Junxiang Ding,Jinyu Cheng,Qinhua Wu,Baowen Gai,Yiwen Zhou,Ruikun He,Feng Gao,Yixue Li
出处
期刊:Genomics, Proteomics & Bioinformatics [Elsevier BV]
被引量:1
标识
DOI:10.1093/gpbjnl/qzaf011
摘要

The rapid development of biological and medical examination methods has vastly expanded personal biomedical information, including molecular, cellular, image, and electronic health record datasets. Integrating this wealth of information enables precise disease diagnosis, biomarker identification, and treatment design in clinical settings. Artificial intelligence (AI) techniques, particularly deep learning models, have been extensively employed in biomedical applications, demonstrating increased precision, efficiency, and generalization. The success of the large language and vision models further significantly extends their biomedical applications. However, challenges remain in learning these multimodal biomedical datasets, such as data privacy, fusion, and model interpretation. In this review, we provided a comprehensive overview of various biomedical data modalities, multi-modal representation learning methods, and the applications of AI in biomedical data integrative analysis. Additionally, we discussed the challenges in applying these deep learning methods and how to better integrate them into biomedical scenarios. We then proposed future directions for adapting deep learning methods with model pre-training and knowledge integration to advance biomedical research and benefit their clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助草莓小妹采纳,获得10
刚刚
2秒前
谨慎的安柏完成签到,获得积分10
2秒前
猪猪hero发布了新的文献求助10
3秒前
3秒前
gogoyoco发布了新的文献求助10
3秒前
田様应助论文顺利采纳,获得30
3秒前
王博雅发布了新的文献求助10
4秒前
迟渡发布了新的文献求助20
4秒前
6秒前
6秒前
6秒前
7秒前
武六七发布了新的文献求助10
7秒前
周周完成签到,获得积分10
7秒前
Mcling完成签到,获得积分10
8秒前
8秒前
古工楼完成签到,获得积分10
8秒前
程新亮完成签到 ,获得积分10
8秒前
米奇妙妙屋完成签到,获得积分10
8秒前
李悟尔发布了新的文献求助10
9秒前
姚子敏完成签到,获得积分10
10秒前
聪聪过矣完成签到,获得积分10
10秒前
10秒前
缥缈的松鼠完成签到 ,获得积分10
11秒前
草莓小妹发布了新的文献求助10
12秒前
believe发布了新的文献求助10
12秒前
13秒前
小野菌发布了新的文献求助10
13秒前
cxcx发布了新的文献求助30
14秒前
JamesPei应助抠脚大汉采纳,获得10
14秒前
Owen应助杜宇采纳,获得10
14秒前
14秒前
共享精神应助guyankuan采纳,获得10
14秒前
张三完成签到,获得积分10
15秒前
Singularity应助冷静的可愁采纳,获得10
16秒前
17秒前
JamesPei应助zhangzitong采纳,获得10
18秒前
豆子应助无我采纳,获得30
18秒前
彭于晏应助gogoyoco采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939078
求助须知:如何正确求助?哪些是违规求助? 3485203
关于积分的说明 11031412
捐赠科研通 3214977
什么是DOI,文献DOI怎么找? 1776947
邀请新用户注册赠送积分活动 863246
科研通“疑难数据库(出版商)”最低求助积分说明 798787