清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adaptive and cross-attention Vision Transformer-based transfer network for elevator fault diagnosis toward unbalanced samples

电梯 变压器 计算机科学 人工智能 断层(地质) 机器学习 工程类 电气工程 结构工程 电压 生物 古生物学
作者
Cheng He,Zhong Tao,C. Q. Feng,Chengjin Qin,Bin Zheng,Xi Shi,Chengliang Liu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217251329485
摘要

As a large mechanical equipment frequently used in urban life, elevators are prone to various types of mechanical failures, affecting the comfort and safety of passengers. Due to the variable models and operating conditions of elevators, the traditional manual empirical diagnosis based on signal or statistical analysis is difficult to achieve accurate fault identification in the case of scarcity of vibration signal fault samples. In the actual operation of the elevator, guideway, boot liners, rope wheel, and other parts are prone to wear, resulting in vibration and noise of the elevator car. To solve these problems, a new adaptive and cross-attention Vision Transformer-based transfer network (ACAformer) for elevator fault diagnosis is proposed. This method designs a transfer network based on a Vision Transformer (ViT) for a long time series, achieving better equipment and working condition domain adaptation of elevator system under unbalanced samples. Two feature extraction branches with different scales are designed, realizing feature extraction and fusion of rich vibration signals from multiple sensors. Each branch is designed with adaptive attention based on feature resampling, focusing on deep fault features. Cross attention based on the exchange of classification information at different scales is designed, realizing the complementary multiscale fault features of two branches. Ultimately, the fault classification of target domain samples is realized by fine-tuning training of model parameters. For validating the proposed model, fault experiments were done on actual elevators, and the vibration signals were collected. Comparative experiments show that in equipment and working condition transfer tasks, ACAformer improves target domain classification accuracy of 18.2%, 27.0%, 29.6%, 14.1%, 20.3%, and F1-score of 0.299, 0.516, 0.628, 0.274, 0.413 compared with squeeze-excitation residual network, deep convolution neural networks, ViT, ViT with cross attention, ViT with adaptive attention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
任伟超完成签到,获得积分10
6秒前
cdercder应助左右是个疯子采纳,获得30
6秒前
学术骗子小刚完成签到,获得积分0
17秒前
我是老大应助Jasmine采纳,获得10
25秒前
30秒前
32秒前
Jasmine发布了新的文献求助10
38秒前
武雨寒发布了新的文献求助10
42秒前
yjf,123完成签到 ,获得积分20
45秒前
传奇3应助Jasmine采纳,获得10
48秒前
su完成签到 ,获得积分10
56秒前
58秒前
1分钟前
Jasmine发布了新的文献求助10
1分钟前
爱听歌契完成签到 ,获得积分10
1分钟前
shenlee发布了新的文献求助10
1分钟前
1523完成签到 ,获得积分10
1分钟前
racill完成签到 ,获得积分10
1分钟前
1分钟前
Jasmine完成签到,获得积分20
1分钟前
领导范儿应助shenlee采纳,获得10
1分钟前
BLAZe发布了新的文献求助20
1分钟前
蚂蚁踢大象完成签到 ,获得积分10
1分钟前
蛋卷完成签到 ,获得积分10
1分钟前
流浪的鲨鱼完成签到,获得积分20
1分钟前
BLAZe完成签到,获得积分10
1分钟前
科研通AI2S应助武雨寒采纳,获得10
1分钟前
1分钟前
lingling完成签到 ,获得积分10
1分钟前
在水一方应助Jasmine采纳,获得10
1分钟前
追梦发布了新的文献求助10
1分钟前
Qian完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Jasmine发布了新的文献求助10
1分钟前
武雨寒发布了新的文献求助10
1分钟前
Lucas应助Jasmine采纳,获得10
2分钟前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Feminist Explorations of Urban China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372816
关于积分的说明 10475466
捐赠科研通 3092636
什么是DOI,文献DOI怎么找? 1702237
邀请新用户注册赠送积分活动 818839
科研通“疑难数据库(出版商)”最低求助积分说明 771101