Real-Time Depth Completion With Multimodal Feature Alignment

特征(语言学) 计算机科学 完井(油气井) 人工智能 计算机视觉 模式识别(心理学) 地质学 语言学 石油工程 哲学
作者
Shenglun Chen,Xinzhu Ma,Hong Zhang,Haojie Li,Baoli Sun,Zhihui Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2025.3551903
摘要

As a key problem in computer vision, depth completion aims to recover dense depth maps from sparse ones [generally derived from light detection and ranging (LiDAR)]. Most methods introduce synchronous RGB images and leverage multimodal fusion to integrate multimodal features from these modalities to describe the complete scene. However, their different natural characteristics lead to inconsistency in features, potentially impacting the effectiveness of multimodal feature fusion. To address this issue, we propose a feature alignment network (FANet) that introduces an alignment scheme to enhance the consistency between multimodal features. This scheme aligns the modality-invariant semantic context, which is invariant to changes in modality and represents the correlation between a pixel and its surroundings. Specifically, we first design an asymmetric context extraction (ACE) module to extract modality-invariant semantic contexts from multimodal features within limited GPU memory, and then pull them closer to improve consistency. Crucially, our alignment scheme is only applied during the training phase, and no additional computation cost is incurred in the inference phase. Moreover, we introduce a simple yet effective refinement module to refine estimated results via residual learning based on intermediate depth maps and sparse depth maps. Extensive experiments on KITTI and VOID datasets demonstrate that our method achieves competitive performance against typical real-time methods. In addition, we embed the proposed alignment scheme and refinement module into other methods to demonstrate their effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助ll采纳,获得10
1秒前
qsk_why发布了新的文献求助10
1秒前
自由马儿发布了新的文献求助10
2秒前
2秒前
2秒前
陈陈完成签到,获得积分10
2秒前
DL发布了新的文献求助10
3秒前
Akim应助柔弱河马采纳,获得10
3秒前
Firmian发布了新的文献求助10
3秒前
称心靖雁发布了新的文献求助10
3秒前
virgil完成签到,获得积分10
3秒前
3秒前
4秒前
Rui_Rui发布了新的文献求助10
4秒前
sndurehfcn完成签到,获得积分10
4秒前
典雅完成签到,获得积分10
4秒前
谨慎的幻悲完成签到,获得积分10
4秒前
5秒前
5秒前
理塘丁真发布了新的文献求助10
5秒前
zz发布了新的文献求助10
5秒前
5秒前
日升换月落完成签到 ,获得积分10
5秒前
6秒前
科研通AI5应助郭苏彤采纳,获得10
6秒前
lrll发布了新的文献求助10
6秒前
舛中完成签到,获得积分10
7秒前
不知名发布了新的文献求助10
8秒前
zjc发布了新的文献求助10
8秒前
Kyle发布了新的文献求助10
8秒前
sndurehfcn发布了新的文献求助10
9秒前
yang完成签到,获得积分10
9秒前
SciGPT应助麦兜采纳,获得10
9秒前
CodeCraft应助王忘汪采纳,获得10
9秒前
英姑应助cxcx采纳,获得10
9秒前
橘子完成签到,获得积分10
9秒前
外向沅发布了新的文献求助10
10秒前
DL完成签到,获得积分10
10秒前
完美世界应助popo采纳,获得10
11秒前
Tammy发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167443
求助须知:如何正确求助?哪些是违规求助? 4359422
关于积分的说明 13572960
捐赠科研通 4205794
什么是DOI,文献DOI怎么找? 2306607
邀请新用户注册赠送积分活动 1306223
关于科研通互助平台的介绍 1252822