清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Semantic Clinical Artificial Intelligence vs Native Large Language Model Performance on the USMLE

医学教育 医学 计算机科学 心理学
作者
Peter L. Elkin,G.K. Mehta,Frank LeHouillier,Melissa Resnick,Sarah Mullin,Crystal Tomlin,Skyler Resendez,Jiaxing Liu,Jonathan R. Nebeker,Steven H. Brown
出处
期刊:JAMA network open [American Medical Association]
卷期号:8 (4): e256359-e256359
标识
DOI:10.1001/jamanetworkopen.2025.6359
摘要

Importance Large language models (LLMs) are being implemented in health care. Enhanced accuracy and methods to maintain accuracy over time are needed to maximize LLM benefits. Objective To evaluate whether LLM performance on the US Medical Licensing Examination (USMLE) can be improved by including formally represented semantic clinical knowledge. Design, Setting, and Participants This comparative effectiveness research study was conducted between June 2024 and February 2025 at the Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, using sample questions from the USMLE Steps 1, 2, and 3. Intervention Semantic clinical artificial intelligence (SCAI) was developed to insert formally represented semantic clinical knowledge into LLMs using retrieval augmented generation (RAG). Main Outcomes and Measures The SCAI method was evaluated by comparing the performance of 3 Llama LLMs (13B, 70B, and 405B; Meta) with and without SCAI RAG on text-based questions from the USMLE Steps 1, 2, and 3. LLM accuracy for answering questions was determined by comparing the LLM output with the USMLE answer key. Results The LLMs were tested on 87 questions in the USMLE Step 1, 103 in Step 2, and 123 in Step 3. The 13B LLM enhanced by SCAI RAG was associated with significantly improved performance on Steps 1 and 3 but only met the 60% passing threshold on Step 3 (74 questions correct [60.2%]). The 70B and 405B LLMs passed all the USMLE steps with and without SCAI RAG. The SCAI RAG 70B model scored 80 questions (92.0%) correctly on Step 1, 82 (79.6%) on Step 2, and 112 (91.1%) on Step 3. The SCAI RAG 405B model scored 79 (90.8%) correctly on Step 1, 87 (84.5%) on Step 2, and 117 (95.1%) on Step 3. Significant improvements associated with SCAI RAG were found for the 13B model on Steps 1 and 3, the 70B model on Step 2, and the 405B parameter model on Step 3. The 70B model was significantly better than the 13B model, and the 405B model was not significantly better than the 70B model. Conclusions and Relevance In this comparative effectiveness research study, SCAI RAG was associated with significantly improved scores on the USMLE Steps 1, 2, and 3. The 13B model passed Step 3 with RAG, and the 70B and 405B models passed and scored well on Steps 1, 2, and 3 with or without augmentation. New forms of reasoning by LLMs, like semantic reasoning, have potential to improve the accuracy of LLM performance on important medical questions. Improving LLM performance in health care with targeted, up-to-date clinical knowledge is an important step in LLM implementation and acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘清河完成签到 ,获得积分10
21秒前
小小铱完成签到,获得积分10
25秒前
kryptonite完成签到 ,获得积分10
30秒前
留胡子的丹彤完成签到 ,获得积分10
45秒前
46秒前
lalala完成签到,获得积分10
48秒前
笨笨完成签到 ,获得积分10
48秒前
xiewuhua完成签到,获得积分10
55秒前
科研通AI5应助科研通管家采纳,获得30
1分钟前
Ayn完成签到 ,获得积分10
1分钟前
sssss完成签到,获得积分10
1分钟前
Ricardo完成签到 ,获得积分10
1分钟前
QY完成签到 ,获得积分10
1分钟前
研友_LpvQlZ完成签到,获得积分10
1分钟前
博士后完成签到 ,获得积分10
1分钟前
qingxinhuo完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
noss发布了新的文献求助10
2分钟前
fogsea完成签到,获得积分0
2分钟前
ryan1300完成签到 ,获得积分10
2分钟前
2分钟前
madison完成签到 ,获得积分10
2分钟前
zsicgb发布了新的文献求助10
2分钟前
Drizzle完成签到,获得积分10
2分钟前
文献蚂蚁完成签到,获得积分10
2分钟前
真的OK完成签到,获得积分10
2分钟前
洋芋饭饭完成签到,获得积分10
2分钟前
ys1008完成签到,获得积分10
2分钟前
xhsz1111完成签到 ,获得积分10
2分钟前
SC完成签到 ,获得积分10
2分钟前
风中琦完成签到 ,获得积分10
2分钟前
jkaaa完成签到,获得积分10
2分钟前
zsicgb完成签到 ,获得积分10
3分钟前
zhan20200503完成签到,获得积分10
3分钟前
智智完成签到 ,获得积分10
3分钟前
端庄的魔镜完成签到 ,获得积分10
3分钟前
asdfqwer发布了新的文献求助10
4分钟前
minuxSCI完成签到,获得积分10
4分钟前
xue完成签到 ,获得积分10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776014
求助须知:如何正确求助?哪些是违规求助? 3321534
关于积分的说明 10206239
捐赠科研通 3036609
什么是DOI,文献DOI怎么找? 1666392
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805