Semantic Clinical Artificial Intelligence vs Native Large Language Model Performance on the USMLE

医学教育 医学 计算机科学 心理学
作者
Peter L. Elkin,G.K. Mehta,Frank LeHouillier,Melissa Resnick,Sarah Mullin,Crystal Tomlin,Skyler Resendez,Jiaxing Liu,Jonathan R. Nebeker,Steven H. Brown
出处
期刊:JAMA network open [American Medical Association]
卷期号:8 (4): e256359-e256359
标识
DOI:10.1001/jamanetworkopen.2025.6359
摘要

Importance Large language models (LLMs) are being implemented in health care. Enhanced accuracy and methods to maintain accuracy over time are needed to maximize LLM benefits. Objective To evaluate whether LLM performance on the US Medical Licensing Examination (USMLE) can be improved by including formally represented semantic clinical knowledge. Design, Setting, and Participants This comparative effectiveness research study was conducted between June 2024 and February 2025 at the Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, using sample questions from the USMLE Steps 1, 2, and 3. Intervention Semantic clinical artificial intelligence (SCAI) was developed to insert formally represented semantic clinical knowledge into LLMs using retrieval augmented generation (RAG). Main Outcomes and Measures The SCAI method was evaluated by comparing the performance of 3 Llama LLMs (13B, 70B, and 405B; Meta) with and without SCAI RAG on text-based questions from the USMLE Steps 1, 2, and 3. LLM accuracy for answering questions was determined by comparing the LLM output with the USMLE answer key. Results The LLMs were tested on 87 questions in the USMLE Step 1, 103 in Step 2, and 123 in Step 3. The 13B LLM enhanced by SCAI RAG was associated with significantly improved performance on Steps 1 and 3 but only met the 60% passing threshold on Step 3 (74 questions correct [60.2%]). The 70B and 405B LLMs passed all the USMLE steps with and without SCAI RAG. The SCAI RAG 70B model scored 80 questions (92.0%) correctly on Step 1, 82 (79.6%) on Step 2, and 112 (91.1%) on Step 3. The SCAI RAG 405B model scored 79 (90.8%) correctly on Step 1, 87 (84.5%) on Step 2, and 117 (95.1%) on Step 3. Significant improvements associated with SCAI RAG were found for the 13B model on Steps 1 and 3, the 70B model on Step 2, and the 405B parameter model on Step 3. The 70B model was significantly better than the 13B model, and the 405B model was not significantly better than the 70B model. Conclusions and Relevance In this comparative effectiveness research study, SCAI RAG was associated with significantly improved scores on the USMLE Steps 1, 2, and 3. The 13B model passed Step 3 with RAG, and the 70B and 405B models passed and scored well on Steps 1, 2, and 3 with or without augmentation. New forms of reasoning by LLMs, like semantic reasoning, have potential to improve the accuracy of LLM performance on important medical questions. Improving LLM performance in health care with targeted, up-to-date clinical knowledge is an important step in LLM implementation and acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傅诗淇发布了新的文献求助10
1秒前
1秒前
曾宪俊完成签到 ,获得积分10
1秒前
李健的小迷弟应助Adems采纳,获得10
2秒前
李健的小迷弟应助LLLLL采纳,获得10
2秒前
张姚完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
所所应助多金采纳,获得10
6秒前
7秒前
VDC发布了新的文献求助10
7秒前
tmxx完成签到,获得积分10
9秒前
123完成签到,获得积分10
10秒前
10秒前
roclie完成签到,获得积分10
11秒前
wqx发布了新的文献求助10
11秒前
12秒前
bkagyin应助唐同学采纳,获得10
12秒前
12秒前
12秒前
枯木逢春完成签到,获得积分10
13秒前
CrysField发布了新的文献求助10
13秒前
21完成签到 ,获得积分10
14秒前
15秒前
ddaa发布了新的文献求助10
18秒前
18秒前
18秒前
陈睿发布了新的文献求助30
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得20
18秒前
丘比特应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
19秒前
一只阳应助科研通管家采纳,获得10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
School Psychology 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4027345
求助须知:如何正确求助?哪些是违规求助? 3566919
关于积分的说明 11353015
捐赠科研通 3298047
什么是DOI,文献DOI怎么找? 1816134
邀请新用户注册赠送积分活动 890569
科研通“疑难数据库(出版商)”最低求助积分说明 813692