Generative prediction of causal gene sets responsible for complex traits

生成语法 人工智能 生成模型 计算机科学 心理学 认知心理学 机器学习
作者
Benjamin Kuznets-Speck,Buduka Ogonor,Thomas P. Wytock,Adilson E. Motter
标识
DOI:10.1101/2025.04.17.649405
摘要

The relationship between genotype and phenotype remains an outstanding question for organism-level traits because these traits are generally complex. The challenge arises from complex traits being determined by a combination of multiple genes (or loci), which leads to an explosion of possible genotype-phenotype mappings. The primary techniques to resolve these mappings are genome/transcriptome-wide association studies, which are limited by their lack of causal inference and statistical power. Here, we develop an approach that leverages transcriptional data endowed with causal information and a generative machine learning model to strengthen statistical power. Our implementation of the approach (dubbed TWAVE) includes a variational autoencoder trained on human transcriptional data, which is incorporated into an optimization framework. Given a trait phenotype, TWAVE generates expression profiles, which we dimensionally reduce by identifying independently varying generalized pathways (eigengenes). We then conduct constrained optimization to find causal gene sets that are the gene perturbations whose measured transcriptomic responses best explain trait phenotype differences. By considering several complex traits, we show that the approach identifies causal genes that cannot be detected by the primary existing techniques. Moreover, the approach identifies complex diseases caused by distinct sets of genes, meaning that the disease is polygenic and exhibits distinct subtypes driven by different genotype-phenotype mappings. We suggest that the approach will enable the design of tailored experiments to identify multi-genic targets to address complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
糕gao发布了新的文献求助10
2秒前
3秒前
为你比拟发布了新的文献求助10
4秒前
5秒前
Cheryl完成签到 ,获得积分10
5秒前
冷艳晓丝完成签到,获得积分10
6秒前
lvsehx发布了新的文献求助10
6秒前
7秒前
SKZ发布了新的文献求助10
7秒前
SciGPT应助sadwawa采纳,获得10
7秒前
ab发布了新的文献求助10
7秒前
7秒前
lrl发布了新的文献求助10
8秒前
直率媚颜完成签到,获得积分10
8秒前
俏皮果汁发布了新的文献求助10
8秒前
樱sky发布了新的文献求助10
9秒前
9秒前
10秒前
善学以致用应助ab采纳,获得10
10秒前
11秒前
FYF完成签到 ,获得积分20
11秒前
海孩子发布了新的文献求助10
12秒前
哈迪发布了新的文献求助10
13秒前
13秒前
眉洛发布了新的文献求助20
13秒前
King完成签到,获得积分10
15秒前
111发布了新的文献求助30
16秒前
Ava应助lvsehx采纳,获得10
17秒前
斯文败类应助张鑫采纳,获得10
17秒前
Ava应助xia采纳,获得10
18秒前
melon发布了新的文献求助10
19秒前
刚果逆风关注了科研通微信公众号
20秒前
烟花应助爱学习的大聪明采纳,获得10
20秒前
如意葶完成签到 ,获得积分10
21秒前
哈迪完成签到,获得积分20
21秒前
所所应助俏皮果汁采纳,获得10
22秒前
22秒前
wanci应助哈迪采纳,获得10
25秒前
领导范儿应助SKZ采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916263
求助须知:如何正确求助?哪些是违规求助? 3461779
关于积分的说明 10918925
捐赠科研通 3188596
什么是DOI,文献DOI怎么找? 1762727
邀请新用户注册赠送积分活动 853123
科研通“疑难数据库(出版商)”最低求助积分说明 793649