亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimization Analysis of Power Grid Data Quality by Federal Average Algorithm

电网 电能质量 网格 质量(理念) 计算机科学 功率(物理) 算法 数学 物理 几何学 量子力学
作者
Li Tang,Biaoqi Li,Ting Zeng,Haibin Liu,Yu Shen
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425402840
摘要

This paper explores the application and benefits of the Federated Averaging (FedAvg) algorithm in optimizing power grid data quality as the power grid evolves toward more intelligent, data-driven systems, ensuring high-quality data becomes critical to the effective operation and management of the grid. However, optimizing data quality is a complex challenge due to the involvement of multiple data holders, each with privacy concerns that prevent the sharing of sensitive information. The FedAvg algorithm offers a promising solution by enabling the aggregation of data insights across distributed systems without the need to share raw data, thus preserving privacy while improving data quality. This study provides a comprehensive evaluation of the FedAvg algorithm’s impact on power grid data quality through a detailed implementation process. The research outlines the algorithm’s step-by-step optimization procedure, highlighting key design choices, such as model aggregation strategies, communication protocols, and iterative updates. By analyzing real-world application cases, we demonstrate how FedAvg addresses challenges such as data heterogeneity, missing data, and inconsistencies across different grid regions. Additionally, we present a series of experimental results that include a range of data quality metrics — such as accuracy, consistency, and reliability — to assess the algorithm’s effectiveness. The findings of this study show that the FedAvg algorithm can significantly enhance the accuracy and consistency of power grid data. Through its distributed approach, it not only improves the quality of data but also enhances the operational efficiency and reliability of the grid. The paper provides a clearer understanding of how FedAvg can be effectively implemented in power grid systems and its direct impact on data quality. This research contributes to the broader field of grid management by offering practical insights into leveraging federated learning techniques for data optimization while maintaining privacy, thus offering a more comprehensive and scalable solution for modern power grids.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狮子完成签到,获得积分10
2秒前
山茶花发布了新的文献求助10
16秒前
20秒前
27秒前
量子星尘发布了新的文献求助10
33秒前
Jayden完成签到 ,获得积分10
38秒前
吃瓜米吃瓜米完成签到 ,获得积分10
40秒前
丘比特应助山茶花采纳,获得10
58秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
1分钟前
可耐的海豚完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
卿欣完成签到 ,获得积分10
2分钟前
Liumingyu完成签到,获得积分10
2分钟前
2分钟前
Liumingyu发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
天天快乐应助Liumingyu采纳,获得10
2分钟前
ling发布了新的文献求助10
2分钟前
2分钟前
Owen应助zhangyuze采纳,获得10
2分钟前
开心蹇完成签到 ,获得积分10
2分钟前
开朗嵩发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
追三完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
开朗嵩发布了新的文献求助10
3分钟前
3分钟前
昌莆完成签到 ,获得积分10
3分钟前
水的很厉害完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3889360
求助须知:如何正确求助?哪些是违规求助? 3431492
关于积分的说明 10774180
捐赠科研通 3156575
什么是DOI,文献DOI怎么找? 1743163
邀请新用户注册赠送积分活动 841554
科研通“疑难数据库(出版商)”最低求助积分说明 785977