球体
类型(生物学)
癌症研究
化学
计算机科学
计算生物学
医学
生物
细胞培养
遗传学
生态学
作者
Thomas S. Dexheimer,Zahra Davoudi,Nathan P. Coussens,Thomas Silvers,Joel Morris,Naoko Takebe,Rabih Said,Jeffrey A. Moscow,James H. Doroshow,Beverly A. Teicher
标识
DOI:10.1016/j.slasd.2025.100222
摘要
Dysregulation of the phosphatidylinositol 3-kinase (PI3K) pathway is a key contributor to cancer, making PI3K inhibitors a promising approach for targeted therapy. The selectivity of available inhibitors varies across different PI3K isoforms. Alpelisib and inavolisib are selective for the α-isoform, while duvelisib targets the δ- and γ-isoforms, and copanlisib is a pan-PI3K inhibitor, active against all isoforms. This study investigated the activity of these four PI3K inhibitors in combination with other targeted agents using multi-cell type tumor spheroids composed of 60% malignant cells, 25% endothelial cells, and 15% mesenchymal stem cells. Twenty-nine tumor spheroid models were evaluated, including twenty-six patient-derived cancer cell lines from the NCI Patient-Derived Models Repository and three established cell lines from the NCI-60 human tumor cell line panel. Additive and/or synergistic effects were observed with alpelisib or inavolisib or copanlisib in combination with a RAS/MEK/ERK pathway inhibitor, either selumetinib (MEK), ravoxertinib (ERK 1/2), or tovorafenib (DAY101, RAF). Combinations of each of these three PI3K inhibitors with the KRAS mutation specific inhibitors MTRX1133 (KRAS G12D) or sotorasib (KRAS G12C) had selective activity in cell lines harboring the corresponding target. Lastly, combination effects were observed from vertical inhibition of the PI3K/AKT/mTOR pathway with a PI3K inhibitor in combination with either the mTORC1/2 inhibitor sapanisertib or an AKT inhibitor, ipatasertib or afuresertib.
科研通智能强力驱动
Strongly Powered by AbleSci AI