Sacrificial 3D printing to fabricate MXene-based wearable sensors with tunable performance

可穿戴计算机 可穿戴技术 3D打印 材料科学 纳米技术 嵌入式系统 计算机科学 复合材料
作者
Amr Osman,Hui Liu,Jian Lü
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:484: 149461-149461 被引量:8
标识
DOI:10.1016/j.cej.2024.149461
摘要

Wearable sensors are becoming a vital element of newly developed smart devices for their significant prospects in health monitoring, motion detection, and human–machine interactions. Introducing a cost-effective strategy to fabricate pressure sensors with high sensitivity, compressibility, recoverability, and linearity, while also maintaining control over the structure, is a challenge in the development of scalable and high-performance wearable devices. Herein, a fused deposition modelling (FDM)-assisted dip coating is performed to fabricate highly porous pressure sensors with gyroid topologies derived from 3D-printed sacrificial molds. A layer-by-layer dip coating is proposed to obtain a uniform conductive layer over elastomer-based scaffolds using negatively and positively charged MXene nanosheets. The porous sensor based on the self-assembled MXene demonstrates a high sensitivity (9.859 kPa−1) in an extensive linearity range of up to 50 kPa, negligible hysteresis, and good stability up to 1750 cycles. Additionally, the sensor exhibits high temperature sensitivity (4.349 % °C−1) with superb linearity (up to 100 °C). The distinctive sensing and deformation mechanisms are elucidated in detail using in situ SEM and finite element analysis. By tuning the lattice structure of the sensors, the pressure sensitivities can be significantly improved to 34.43 kPa−1 and 84.47 kPa−1 within the pressure ranges of 12–34 kPa and 34–55 kPa, respectively. The gyroid-derived pressure sensor exhibits promising potential in diverse applications, including pulse rate monitoring, phonation, and motion activities. A 4 × 4 sensor array is assembled to provide real-time spatial pressure mapping. Furthermore, the wearability of the sensor can be tailored to introduce user-specific products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll发布了新的文献求助10
2秒前
Cc8完成签到,获得积分10
3秒前
3秒前
含蓄的芾发布了新的文献求助10
3秒前
木子完成签到 ,获得积分10
6秒前
Orange应助郭宇采纳,获得10
9秒前
15秒前
上官若男应助没有昵称采纳,获得10
16秒前
冰魂应助跳跃小伙采纳,获得10
19秒前
香蕉乐萱发布了新的文献求助10
19秒前
21秒前
争渡完成签到,获得积分10
21秒前
ln发布了新的文献求助10
27秒前
Akim应助douning采纳,获得10
29秒前
刘敏小七给刘敏小七的求助进行了留言
30秒前
31秒前
动听雁山完成签到 ,获得积分10
33秒前
淡然白安发布了新的文献求助10
35秒前
含蓄的芾完成签到,获得积分20
38秒前
冰魂应助硕shuo采纳,获得20
38秒前
wenwenwang完成签到 ,获得积分10
41秒前
45秒前
20240901完成签到,获得积分10
49秒前
51秒前
野性的晓蕾完成签到,获得积分10
51秒前
prim发布了新的文献求助10
54秒前
tinneywu完成签到 ,获得积分10
54秒前
57秒前
58秒前
1分钟前
刘敏小七发布了新的文献求助10
1分钟前
怕孤单的雁荷完成签到,获得积分10
1分钟前
田様应助nancy吴采纳,获得10
1分钟前
1分钟前
1分钟前
清澄完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lll发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209047
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757921