Classification of grapevine varieties using UAV hyperspectral imaging

高光谱成像 葡萄园 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 任务(项目管理) 地理 数据库 工程类 考古 系统工程
作者
Alfonso López,Carlos J. Ogáyar,Francisco R. Feito,Joaquim J. Sousa
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.12851
摘要

The classification of different grapevine varieties is a relevant phenotyping task in Precision Viticulture since it enables estimating the growth of vineyard rows dedicated to different varieties, among other applications concerning the wine industry. This task can be performed with destructive methods that require time-consuming tasks, including data collection and analysis in the laboratory. However, Unmanned Aerial Vehicles (UAV) provide a more efficient and less prohibitive approach to collecting hyperspectral data, despite acquiring noisier data. Therefore, the first task is the processing of these data to correct and downsample large amounts of data. In addition, the hyperspectral signatures of grape varieties are very similar. In this work, a Convolutional Neural Network (CNN) is proposed for classifying seventeen varieties of red and white grape variants. Rather than classifying single samples, these are processed together with their neighbourhood. Hence, the extraction of spatial and spectral features is addressed with 1) a spatial attention layer and 2) Inception blocks. The pipeline goes from processing to dataset elaboration, finishing with the training phase. The fitted model is evaluated in terms of response time, accuracy and data separability, and compared with other state-of-the-art CNNs for classifying hyperspectral data. Our network was proven to be much more lightweight with a reduced number of input bands, a lower number of trainable weights and therefore, reduced training time. Despite this, the evaluated metrics showed much better results for our network (~99% overall accuracy), in comparison with previous works barely achieving 81% OA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助纪鹏飞采纳,获得10
4秒前
Xu关注了科研通微信公众号
6秒前
7秒前
东邪西毒加任我行完成签到,获得积分10
9秒前
bc应助rrrrroxie采纳,获得40
10秒前
Sunshine完成签到,获得积分10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
CipherSage应助刘搞笑采纳,获得10
12秒前
13秒前
Aries完成签到 ,获得积分10
17秒前
犹豫紫丝发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
tier3完成签到,获得积分10
24秒前
24秒前
我以為忘了想念完成签到 ,获得积分10
25秒前
helly完成签到,获得积分10
26秒前
26秒前
27秒前
ariaooo完成签到,获得积分10
28秒前
28秒前
29秒前
liu发布了新的文献求助10
30秒前
科研通AI2S应助默默忆山采纳,获得10
33秒前
sure发布了新的文献求助10
33秒前
Orange应助liu采纳,获得10
34秒前
奋斗的荆发布了新的文献求助10
35秒前
zjw发布了新的文献求助10
35秒前
顺利的丹妗完成签到,获得积分10
37秒前
LWJ完成签到 ,获得积分10
42秒前
43秒前
在水一方应助甜美无剑采纳,获得10
45秒前
chen发布了新的文献求助10
45秒前
骨科小手完成签到,获得积分10
45秒前
机灵的雁蓉完成签到 ,获得积分10
46秒前
48秒前
骨科小手发布了新的文献求助10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415