Electronic structure engineering of electrocatalyst for efficient urea oxidation reaction

电催化剂 材料科学 电解 催化作用 电化学 电子结构 电子转移 纳米技术 物理化学 电极 有机化学 计算化学 化学 电解质
作者
Akash S. Rasal,Hao Ming Chen,Wen‐Yueh Yu
出处
期刊:Nano Energy [Elsevier]
卷期号:121: 109183-109183 被引量:1
标识
DOI:10.1016/j.nanoen.2023.109183
摘要

Urea electrolysis is a viable approach to produce hydrogen energy, while the urea oxidation reaction (UOR) presents major obstacles due to its low conversion efficiency and high kinetic barriers. To achieve the full potential of UOR, engineering the electronic structure of UOR electrocatalysts is expected not only to realize high-valence active centers but also to improve the electrical conductivity, thus boosting the overall catalytic efficacies. Furthermore, electronic structure engineering holds promise for facilitating the interface-driven electron transfer, fine-tuning the binding strength of essential reaction intermediates (e.g., NH*, and CO*), and enabling the COO* desorption step in the reaction pathway. In order to construct electronic modulation of electrocatalysts, it is crucial to comprehend how electronic structure engineering impacts UOR activity and what guidelines should be followed. In this review, we begin with an overview of the key differences between water electrolysis and urea electrolysis, then go over the activity parameters used to evaluate the catalytic efficacies that could be expected to help readers to gain a fundamental understanding of this field. This will be followed by outlining the first principles and key parameters of catalyst electronic structure engineering for the benefit of the reader. Furthermore, detailed notes were provided on the potential of electronic structure-engineered catalysts to speed up the UOR kinetics with a focus on interface engineering, doping engineering, defect engineering, phase engineering, and strain engineering. Finally, we discuss the difficulties and opportunities that lie beneath the prospect of developing electrocatalysts for UOR that are both efficient and effective in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助淡淡的纸鹤采纳,获得10
刚刚
简单夜山完成签到,获得积分10
刚刚
见贤思齐应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得20
刚刚
狂野的山雁完成签到,获得积分10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
若水应助科研通管家采纳,获得20
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
SOLOMON应助科研通管家采纳,获得20
1秒前
Owen应助科研通管家采纳,获得30
1秒前
PJ完成签到,获得积分10
4秒前
wen发布了新的文献求助10
4秒前
左丘不评完成签到 ,获得积分0
5秒前
5秒前
镜哥发布了新的文献求助10
6秒前
7秒前
霹雳小土豆-完成签到,获得积分10
7秒前
8秒前
youyou完成签到,获得积分10
9秒前
rosy发布了新的文献求助10
9秒前
洁净书兰发布了新的文献求助10
10秒前
Frank完成签到,获得积分10
10秒前
songf11完成签到,获得积分10
10秒前
Catwjxo完成签到,获得积分10
11秒前
crazyatai完成签到,获得积分10
12秒前
fantexi113发布了新的文献求助10
12秒前
RE完成签到,获得积分10
12秒前
12秒前
wen完成签到,获得积分10
12秒前
梦璃完成签到,获得积分10
12秒前
油菜花完成签到,获得积分10
13秒前
14秒前
冷静的海白完成签到,获得积分10
15秒前
潇潇暮雨完成签到,获得积分10
15秒前
东东发布了新的文献求助10
16秒前
困倦南瓜发布了新的文献求助10
17秒前
stark完成签到,获得积分0
18秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
薩提亞模式團體方案對青年情侶輔導效果之研究 400
3X3 Basketball: Everything You Need to Know 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2387757
求助须知:如何正确求助?哪些是违规求助? 2094209
关于积分的说明 5271614
捐赠科研通 1820978
什么是DOI,文献DOI怎么找? 908346
版权声明 559289
科研通“疑难数据库(出版商)”最低求助积分说明 485268