已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning improves early prediction of organ failure in hyperlipidemia acute pancreatitis using clinical and abdominal CT features

医学 急性胰腺炎 接收机工作特性 队列 胰腺炎 机器学习 人口统计学的 单变量 单变量分析 随机森林 计算机断层摄影术 人工智能 试验预测值 内科学 放射科 多元分析 多元统计 人口学 社会学 计算机科学
作者
Weihang Lin,Yingbao Huang,Jiale Zhu,Houzhang Sun,Na Su,Jingye Pan,Junkang Xu,Lifang Chen
出处
期刊:Pancreatology [Elsevier]
卷期号:24 (3): 350-356 被引量:2
标识
DOI:10.1016/j.pan.2024.02.003
摘要

This study aimed to investigate and validate machine-learning predictive models combining computed tomography and clinical data to early predict organ failure (OF) in Hyperlipidemic acute pancreatitis (HLAP). Demographics, laboratory parameters and computed tomography imaging data of 314 patients with HLAP from the First Affiliated Hospital of Wenzhou Medical University between 2017 and 2021, were retrospectively analyzed. Sixty-five percent of patients (n = 204) were assigned to the training group and categorized as patients with and without OF. Parameters were compared by univariate analysis. Machine-learning methods including random forest (RF) were used to establish model to predict OF of HLAP. Areas under the curves (AUCs) of receiver operating characteristic were calculated. The remaining 35% patients (n = 110) were assigned to the validation group to evaluate the performance of models to predict OF. Ninety-three (45.59%) and fifty (45.45%) patients from the training and the validation cohort, respectively, developed OF. The RF model showed the best performance to predict OF, with the highest AUC value of 0.915. The sensitivity (0.828) and accuracy (0.814) of RF model were both the highest among the five models in the study cohort. In the validation cohort, RF model continued to show the highest AUC (0.820), accuracy (0.773) and sensitivity (0.800) to predict OF in HLAP, while the positive and negative likelihood ratios and post-test probability were 3.22, 0.267 and 72.85%, respectively. Machine-learning models can be used to predict OF occurrence in HLAP in our pilot study. RF model showed the best predictive performance, which may be a promising candidate for further clinical validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
飞雪完成签到,获得积分10
1秒前
李振博发布了新的文献求助30
2秒前
自信尔竹完成签到,获得积分10
2秒前
谢琳发布了新的文献求助10
2秒前
4秒前
白泽发布了新的文献求助10
4秒前
5秒前
natmed应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
aub完成签到 ,获得积分10
7秒前
小巧黑裤发布了新的文献求助50
7秒前
Dazzle123发布了新的文献求助10
8秒前
我是老大应助myz采纳,获得10
8秒前
10秒前
连垣发布了新的文献求助10
10秒前
Sun关闭了Sun文献求助
11秒前
一只呆呆完成签到 ,获得积分10
11秒前
yy发布了新的文献求助10
16秒前
啊啊啊啊完成签到,获得积分10
17秒前
icelatte发布了新的文献求助20
24秒前
大模型应助tao采纳,获得10
24秒前
27秒前
27秒前
28秒前
kentonchow应助y159采纳,获得30
29秒前
大力可燕发布了新的文献求助10
32秒前
lilin发布了新的文献求助10
32秒前
仔wang完成签到,获得积分10
33秒前
kentonchow应助Jonathan采纳,获得10
36秒前
QAQ完成签到 ,获得积分10
38秒前
40秒前
40秒前
42秒前
42秒前
44秒前
45秒前
勤能补拙发布了新的文献求助10
45秒前
ni发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356