摘要
Chapter 6 Electrocatalytic Reduction of Carbon Dioxide Kejun Chen, Kejun Chen Central South University, School of Physics, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Changsha, 410083 ChinaSearch for more papers by this authorHongmei Li, Hongmei Li Central South University, School of Physics, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Changsha, 410083 ChinaSearch for more papers by this authorJunwei Fu, Junwei Fu Central South University, School of Physics, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Changsha, 410083 ChinaSearch for more papers by this authorXiqing Wang, Xiqing Wang Central South University, School of Physics, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Changsha, 410083 ChinaSearch for more papers by this authorMin Liu, Min Liu Central South University, School of Physics, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Changsha, 410083 ChinaSearch for more papers by this author Kejun Chen, Kejun Chen Central South University, School of Physics, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Changsha, 410083 ChinaSearch for more papers by this authorHongmei Li, Hongmei Li Central South University, School of Physics, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Changsha, 410083 ChinaSearch for more papers by this authorJunwei Fu, Junwei Fu Central South University, School of Physics, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Changsha, 410083 ChinaSearch for more papers by this authorXiqing Wang, Xiqing Wang Central South University, School of Physics, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Changsha, 410083 ChinaSearch for more papers by this authorMin Liu, Min Liu Central South University, School of Physics, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Changsha, 410083 ChinaSearch for more papers by this author Book Editor(s):Shaohua Shen, Shaohua Shen Xi'an Jiaotong University, Xi'an, ChinaSearch for more papers by this authorShuangyin Wang, Shuangyin Wang Hunan University, Changsha, ChinaSearch for more papers by this author First published: 23 February 2024 https://doi.org/10.1002/9783527831005.ch6 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Electrocatalytic reduction of carbon dioxide into valuable products by surplus and intermittent sustainable energy is considered as a promising technology for sustainable energy and chemical development. However, its practical application is sternly limited by many factors including the electrolytes, selectivity and activity of catalysts, and even electrolysis devices. In this chapter, the recent progresses about those issues for electrocatalytic reduction of carbon dioxide are summarized. To accelerate the practical application of electrocatalytic reduction of carbon dioxide, the major challenges, strategies, and prospects are highlighted to optimize its performance. References Das , S. , Pérez-Ramírez , J. , Gong , J. et al. ( 2020 ). Chem. Soc. Rev. 49 : 2937 – 3004 . 10.1039/C9CS00713J CASPubMedWeb of Science®Google Scholar Yin , J. , Yin , Z. , Jin , J. et al. ( 2021 ). J. Am. Chem. Soc. 143 : 15335 – 15343 . 10.1021/jacs.1c06877 CASPubMedWeb of Science®Google Scholar Rasul , S. , Anjum , D.H. , Jedidi , A. et al. ( 2015 ). Angew. Chem. Int. Ed. 54 : 2146 – 2150 . 10.1002/anie.201410233 CASPubMedWeb of Science®Google Scholar Zhong , H. , Fujii , K. , Nakano , Y. , and Jin , F. ( 2015 ). J. Phys. Chem. C 119 : 55 – 61 . 10.1021/jp509043h CASWeb of Science®Google Scholar Francke , R. , Schille , B. , and Roemelt , M. ( 2018 ). Chem. Rev. 118 : 4631 – 4701 . 10.1021/acs.chemrev.7b00459 CASPubMedWeb of Science®Google Scholar (a) Zhang , Y. , Xia , B. , Ran , J. et al. ( 2020 ). Adv. Energy Mater. 10 : 1903879 . 10.1002/aenm.201903879 CASWeb of Science®Google Scholar (b) Oh , Y. and Hu , X. ( 2013 ). Chem. Soc. Rev. 42 : 2253 – 2261 . 10.1039/C2CS35276A CASPubMedWeb of Science®Google Scholar (a) Göttle , A.J. and Koper , M.T.M. ( 2017 ). Chem. Sci. 8 : 458 – 465 . 10.1039/C6SC02984A CASPubMedWeb of Science®Google Scholar (b) Pei , Y. , Zhong , H. , and Jin , F. ( 2021 ). Energy Sci. Eng. 9 : 1012 – 1032 . 10.1002/ese3.935 CASWeb of Science®Google Scholar (a) Birdja , Y.Y. , Pérez-Gallent , E. , Figueiredo , M.C. et al. ( 2019 ). Nat. Energy 4 : 732 – 745 . 10.1038/s41560-019-0450-y CASWeb of Science®Google Scholar (b) Chang , K. , Zhang , H. , Chen , J.G. et al. ( 2019 ). ACS Catal. 9 : 8197 – 8207 . 10.1021/acscatal.9b01318 CASWeb of Science®Google Scholar Kortlever , R. , Shen , J. , Schouten , K.J.P. et al. ( 2015 ). J. Phys. Chem. Lett. 6 : 4073 – 4082 . 10.1021/acs.jpclett.5b01559 CASPubMedWeb of Science®Google Scholar Jhong , H.-R.M. , Ma , S. , and Kenis , P.J.A. ( 2013 ). Curr. Opin. Chem. Eng. 2 : 191 – 199 . 10.1016/j.coche.2013.03.005 Web of Science®Google Scholar Ringe , S. , Clark , E.L. , Resasco , J. et al. ( 2019 ). Energy Environ. Sci. 12 : 3001 – 3014 . 10.1039/C9EE01341E CASWeb of Science®Google Scholar Sharifi Golru , S. and Biddinger , E.J. ( 2022 ). Chem. Eng. J. 428 : 131303 . 10.1016/j.cej.2021.131303 PubMedGoogle Scholar (a) Ogura , K. , Yano , H. , and Shirai , F. ( 2003 ). J. Electrochem. Soc. 150 : D163 . 10.1149/1.1593044 CASWeb of Science®Google Scholar (b) Hori , Y. ( 2008 ). Modern Aspects of Electrochemistry (ed. C.G. Vayenas , R.E. White , and M.E. Gamboa-Aldeco ), 89 – 189 . New York, New York, NY : Springer . 10.1007/978-0-387-49489-0_3 Google Scholar Qiao , J. , Liu , Y. , and Zhang , J. ( 2016 ). Electrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies . CRC Press . 10.1201/b20177 Google Scholar Duan , Z. , Sun , R. , Zhu , C. , and Chou , I.M. ( 2006 ). Mar. Chem. 98 : 131 – 139 . 10.1016/j.marchem.2005.09.001 CASWeb of Science®Google Scholar Lamaison , S. , Wakerley , D. , Blanchard , J. et al. ( 2020 ). Joule 4 : 395 – 406 . 10.1016/j.joule.2019.11.014 CASWeb of Science®Google Scholar Koper , M.T.M. ( 2013 ). Chem. Sci. 4 : 2710 – 2723 . 10.1039/c3sc50205h CASWeb of Science®Google Scholar Zhang , Z. , Melo , L. , Jansonius , R.P. et al. ( 2020 ). ACS Energy Lett. 5 : 3101 – 3107 . 10.1021/acsenergylett.0c01606 CASWeb of Science®Google Scholar (a) Gupta , N. , Gattrell , M. , and MacDougall , B. ( 2006 ). J. Appl. Electrochem. 36 : 161 – 172 . 10.1007/s10800-005-9058-y CASWeb of Science®Google Scholar (b) Hashiba , H. , Weng , L.-C. , Chen , Y. et al. ( 2018 ). J. Phys. Chem. C 122 : 3719 – 3726 . 10.1021/acs.jpcc.7b11316 CASWeb of Science®Google Scholar Dinh , C.-T. , Burdyny , T. , Kibria , M.G. et al. ( 2018 ). Science 360 : 783 – 787 . 10.1126/science.aas9100 CASPubMedWeb of Science®Google Scholar Resasco , J. , Chen , L.D. , Clark , E. et al. ( 2017 ). J. Am. Chem. Soc. 139 : 11277 – 11287 . 10.1021/jacs.7b06765 CASPubMedWeb of Science®Google Scholar Monteiro , M.C.O. , Dattila , F. , Hagedoorn , B. et al. ( 2021 ). Nature Catal. 4 : 654 – 662 . 10.1038/s41929-021-00655-5 CASWeb of Science®Google Scholar Singh , M.R. , Kwon , Y. , Lum , Y. et al. ( 2016 ). J. Am. Chem. Soc. 138 : 13006 – 13012 . 10.1021/jacs.6b07612 CASPubMedWeb of Science®Google Scholar Liu , M. , Pang , Y. , Zhang , B. et al. ( 2016 ). Nature 537 : 382 – 386 . 10.1038/nature19060 CASPubMedWeb of Science®Google Scholar (a) An , P. , Wei , L. , Li , H. et al. ( 2020 ). J. Mater. Chem. A 8 : 15936 – 15941 . 10.1039/D0TA03645E CASWeb of Science®Google Scholar (b) Gao , F.-Y. , Hu , S.-J. , Zhang , X.-L. et al. ( 2020 ). Angew. Chem. Int. Ed. 59 : 8706 – 8712 . 10.1002/anie.201912348 CASPubMedWeb of Science®Google Scholar Ogura , K. ( 2013 ). J. CO2 Util. 1 : 43 – 49 . 10.1016/j.jcou.2013.03.003 CASWeb of Science®Google Scholar Murata , A. and Hori , Y. ( 1991 ). Bull. Chem. Soc. Jpn. 64 : 123 – 127 . 10.1246/bcsj.64.123 CASWeb of Science®Google Scholar Malkani , A.S. , Anibal , J. , and Xu , B. ( 2020 ). ACS Catal. 10 : 14871 – 14876 . 10.1021/acscatal.0c03553 CASWeb of Science®Google Scholar Wu , H. , Song , J. , Xie , C. et al. ( 2018 ). Green Chemistry 20 : 1765 – 1769 . 10.1039/C8GC00471D CASWeb of Science®Google Scholar Tripkovic , D.V. , Strmcnik , D. , van der Vliet , D. et al. ( 2009 ). Faraday Discuss. 140 : 25 – 40 . 10.1039/B803714K CASWeb of Science®Google Scholar (a) Shaw , S.K. , Berná , A. , Feliu , J.M. et al. ( 2011 ). Phys. Chem. Chem. Phys. 13 : 5242 – 5251 . 10.1039/c0cp02064h CASPubMedWeb of Science®Google Scholar (b) Ogura , K. and Salazar-Villalpando , M.D. ( 2011 ). JOM 63 : 35 – 38 . 10.1007/s11837-011-0009-2 CASGoogle Scholar (c) Verma , S. , Lu , X. , Ma , S. et al. ( 2016 ). Phys. Chem. Chem. Phys. 18 : 7075 – 7084 . 10.1039/C5CP05665A CASPubMedWeb of Science®Google Scholar Hsieh , Y.-C. , Senanayake , S.D. , Zhang , Y. et al. ( 2015 ). ACS Catal. 5 : 5349 – 5356 . 10.1021/acscatal.5b01235 CASWeb of Science®Google Scholar Gao , D. , Scholten , F. , and Roldan Cuenya , B. ( 2017 ). ACS Catal. 7 : 5112 – 5120 . 10.1021/acscatal.7b01416 CASWeb of Science®Google Scholar Huang , Y. , Ong , C.W. , and Yeo , B.S. ( 2018 ). ChemSusChem 11 : 3299 – 3306 . 10.1002/cssc.201801078 CASPubMedWeb of Science®Google Scholar Ogura , K. , Ferrell , J.R. , Cugini , A.V. et al. ( 2010 ). Electrochim. Acta 56 : 381 – 386 . 10.1016/j.electacta.2010.08.065 CASWeb of Science®Google Scholar Hori , Y. , Murata , A. , and Takahashi , R. ( 1989 ). J. Chem. Soc., Faraday Trans. 1 85 : 2309 – 2326 . 10.1039/f19898502309 CASWeb of Science®Google Scholar Cho , M. , Song , J.T. , Back , S. et al. ( 2018 ). ACS Catal. 8 : 1178 – 1185 . 10.1021/acscatal.7b03449 CASWeb of Science®Google Scholar Bagger , A. , Ju , W. , Varela , A.S. et al. ( 2017 ). Chemphyschem 18 : 3266 – 3273 . 10.1002/cphc.201700736 CASPubMedWeb of Science®Google Scholar Gao , S. , Lin , Y. , Jiao , X. et al. ( 2016 ). Nature 529 : 68 – 71 . 10.1038/nature16455 CASPubMedWeb of Science®Google Scholar Lee , C.H. and Kanan , M.W. ( 2015 ). ACS Catal. 5 : 465 – 469 . 10.1021/cs5017672 CASPubMedWeb of Science®Google Scholar Amatore , C. and Saveant , J.M. ( 1981 ). J. Am. Chem. Soc. 103 : 5021 – 5023 . 10.1021/ja00407a008 CASWeb of Science®Google Scholar Hori , Y. , Wakebe , H. , Tsukamoto , T. , and Koga , O. ( 1994 ). Electrochim. Acta 39 : 1833 – 1839 . 10.1016/0013-4686(94)85172-7 CASWeb of Science®Google Scholar Wu , J. , Sharma , P.P. , Harris , B.H. , and Zhou , X.-D. ( 2014 ). J. Power Sources 258 : 189 – 194 . 10.1016/j.jpowsour.2014.02.014 CASWeb of Science®Google Scholar Medina-Ramos , J. , Pupillo , R.C. , Keane , T.P. et al. ( 2015 ). J. Am. Chem. Soc. 137 : 5021 – 5027 . 10.1021/ja5121088 CASPubMedWeb of Science®Google Scholar Gao , D. , Zhang , Y. , Zhou , Z. et al. ( 2017 ). J. Am. Chem. Soc. 139 : 5652 – 5655 . 10.1021/jacs.7b00102 CASPubMedWeb of Science®Google Scholar Ma , M. , Trześniewski , B.J. , Xie , J. , and Smith , W.A. ( 2016 ). Angew. Chem. Int. Ed. 55 : 9748 – 9752 . 10.1002/anie.201604654 CASPubMedWeb of Science®Google Scholar Jiang , X. , Cai , F. , Gao , D. et al. ( 2016 ). Electrochem. Commun. 68 : 67 – 70 . 10.1016/j.elecom.2016.05.003 CASWeb of Science®Google Scholar Huang , H. , Jia , H. , Liu , Z. et al. ( 2017 ). Angew. Chem. Int. Ed. 56 : 3594 – 3598 . 10.1002/anie.201612617 CASPubMedWeb of Science®Google Scholar (a) Kas , R. , Kortlever , R. , Milbrat , A. et al. ( 2014 ). Phys. Chem. Chem. Phys. 16 : 12194 – 12201 . 10.1039/C4CP01520G CASPubMedWeb of Science®Google Scholar (b) Li , Y. , Cui , F. , Ross , M.B. et al. ( 2017 ). Nano Lett. 17 : 1312 – 1317 . 10.1021/acs.nanolett.6b05287 CASPubMedWeb of Science®Google Scholar (c) Li , C.W. , Ciston , J. , and Kanan , M.W. ( 2014 ). Nature 508 : 504 – 507 . 10.1038/nature13249 CASPubMedWeb of Science®Google Scholar Kuhl , K.P. , Hatsukade , T. , Cave , E.R. et al. ( 2014 ). J. Am. Chem. Soc. 136 : 14107 – 14113 . 10.1021/ja505791r CASPubMedWeb of Science®Google Scholar Yu , X. and Pickup , P.G. ( 2008 ). J. Power Sources 182 : 124 – 132 . 10.1016/j.jpowsour.2008.03.075 CASWeb of Science®Google Scholar (a) Li , D. , Wu , J. , Liu , T. et al. ( 2019 ). Chem. Eng. J. 375 : 122024 . Google Scholar (b) Zhang , X. , Chen , Z. , Mou , K. et al. ( 2019 ). Nanoscale 11 : 18715 – 18722 . 10.1039/C9NR06354D CASPubMedWeb of Science®Google Scholar (c) Han , N. , Wang , Y. , Deng , J. et al. ( 2019 ). J. Mater. Chem. A 7 : 1267 – 1272 . 10.1039/C8TA10959A CASWeb of Science®Google Scholar (a) Liu , S. , Xiao , J. , Lu , X.F. et al. ( 2019 ). Angew. Chem. Int. Ed. 58 : 8499 – 8503 . 10.1002/anie.201903613 CASPubMedWeb of Science®Google Scholar (b) Hu , C. , Li , L. , Deng , W. et al. ( 2020 ). ChemSusChem 13 : 6353 – 6359 . 10.1002/cssc.202000557 CASPubMedWeb of Science®Google Scholar (c) Yiliguma , Z. , Wang , C. , Yang , A. et al. ( 2018 ). Mater. Chem. A 6 : 20121 – 20127 . 10.1039/C8TA08058E CASWeb of Science®Google Scholar (a) Kaneco , S. , Iwao , R. , Iiba , K. et al. ( 1999 ). Environ. Eng. Sci. 16 : 131 – 137 . 10.1089/ees.1999.16.131 CASWeb of Science®Google Scholar (b) Zhu , Q. , Ma , J. , Kang , X. et al. ( 2016 ). Angew. Chem. Int. Ed. 55 : 9012 – 9016 . 10.1002/anie.201601974 CASPubMedWeb of Science®Google Scholar Bitar , Z. , Fecant , A. , Trela-Baudot , E. et al. ( 2016 ). Appl. Catal. B 189 : 172 – 180 . 10.1016/j.apcatb.2016.02.041 CASWeb of Science®Google Scholar (a) Yuan , X. , Luo , Y. , Zhang , B. et al. ( 2020 ). Chem. Commun. 56 : 4212 – 4215 . 10.1039/C9CC10078D CASPubMedWeb of Science®Google Scholar (b) Feng , J. , Gao , H. , Feng , J. et al. ( 2020 ). ChemCatChem 12 : 926 – 931 . 10.1002/cctc.201901530 Web of Science®Google Scholar Kwon , I.S. , Debela , T.T. , Kwak , I.H. et al. ( 2019 ). J. Mater. Chem. A 7 : 22879 – 22883 . 10.1039/C9TA06285H CASWeb of Science®Google Scholar Ma , W. , Xie , S. , Zhang , X.-G. et al. ( 2019 ). Nat. Commun. 10 : 892 . 10.1038/s41467-019-08805-x PubMedWeb of Science®Google Scholar Wang , X. , Jiang , X. , Wang , Q. et al. ( 2020 ). Electrochim. Acta 340 : 135948 . PubMedGoogle Scholar Detweiler , Z.M. , White , J.L. , Bernasek , S.L. , and Bocarsly , A.B. ( 2014 ). Langmuir 30 : 7593 – 7600 . 10.1021/la501245p CASPubMedWeb of Science®Google Scholar Watkins , J.D. and Bocarsly , A.B. ( 2014 ). ChemSusChem 7 : 284 – 290 . 10.1002/cssc.201300659 CASPubMedWeb of Science®Google Scholar An , X. , Li , S. , Hao , X. et al. ( 2021 ). Renew. Sust. Energy Rev. 143 : 110952 . 10.1016/j.rser.2021.110952 Google Scholar Eren , E.O. and Özkar , S. ( 2021 ). J. Power Sources 506 : 230215 . 10.1016/j.jpowsour.2021.230215 PubMedGoogle Scholar Kauffman , D.R. , Alfonso , D. , Matranga , C. et al. ( 2012 ). J. Am. Chem. Soc. 134 : 10237 – 10243 . 10.1021/ja303259q CASPubMedWeb of Science®Google Scholar Feng , X. , Jiang , K. , Fan , S. , and Kanan , M.W. ( 2015 ). J. Am. Chem. Soc. 137 : 4606 – 4609 . 10.1021/ja5130513 CASPubMedWeb of Science®Google Scholar Zhu , W. , Zhang , Y.-J. , Zhang , H. et al. ( 2014 ). J. Am. Chem. Soc. 136 : 16132 – 16135 . 10.1021/ja5095099 CASPubMedWeb of Science®Google Scholar Mezzavilla , S. , Horch , S. , Stephens , I.E.L. et al. ( 2019 ). Angew. Chem. Int. Ed. 58 : 3774 – 3778 . 10.1002/anie.201811422 CASPubMedWeb of Science®Google Scholar Kwok , K.S. , Wang , Y. , Cao , M.C. et al. ( 2019 ). Nano Lett. 19 : 9154 – 9159 . 10.1021/acs.nanolett.9b04564 CASPubMedWeb of Science®Google Scholar Kim , C. , Jeon , H.S. , Eom , T. et al. ( 2015 ). J. Am. Chem. Soc. 137 : 13844 – 13850 . 10.1021/jacs.5b06568 CASPubMedWeb of Science®Google Scholar Liu , S. , Sun , C. , Xiao , J. , and Luo , J.-L. ( 2020 ). ACS Catal. 10 : 3158 – 3163 . 10.1021/acscatal.9b03883 CASWeb of Science®Google Scholar (a) Liu , S. , Tao , H. , Liu , Q. et al. ( 2018 ). ACS Catal. 8 : 1469 – 1475 . 10.1021/acscatal.7b03619 CASWeb of Science®Google Scholar (b) Liu , S. , Wang , X.-Z. , Tao , H. et al. ( 2018 ). Nano Energy 45 : 456 – 462 . 10.1016/j.nanoen.2018.01.016 CASWeb of Science®Google Scholar Lee , C.-Y. , Zhao , Y. , Wang , C. et al. ( 2017 ). Sustain. Energy Fuels 1 : 1023 – 1027 . 10.1039/C7SE00069C CASWeb of Science®Google Scholar Jianping , Q. , Juntao , T. , Jie , S. et al. ( 2016 ). Electrochim. Acta 203 : 99 – 108 . 10.1016/j.electacta.2016.03.182 Google Scholar Chen , R. , Cao , M. , Yang , W. et al. ( 2019 ). Chem. Commun. 55 : 9805 – 9808 . 10.1039/C9CC02393C CASPubMedWeb of Science®Google Scholar Suen , N.-T. , Kong , Z.-R. , Hsu , C.-S. et al. ( 2019 ). ACS Catal. 9 : 5217 – 5222 . 10.1021/acscatal.9b00790 CASWeb of Science®Google Scholar Zhu , S. , Wang , Q. , Qin , X. et al. ( 2018 ). Adv. Energy Mater. 8 : 1802238 . 10.1002/aenm.201802238 Web of Science®Google Scholar Wang , J. , Kattel , S. , Hawxhurst , C.J. et al. ( 2019 ). Angew. Chem. Int. Ed. 58 : 6271 – 6275 . 10.1002/anie.201900781 CASPubMedWeb of Science®Google Scholar (a) Lee , J.H. , Kattel , S. , Jiang , Z. et al. ( 2019 ). Nat. Commun. 10 : 3724 ; 10.1038/s41467-019-11352-0 PubMedWeb of Science®Google Scholar (b) Plana , D. , Flórez-Montaño , J. , Celorrio , V. et al. ( 2013 ). Chem. Commun. 49 : 10962 – 10964 . 10.1039/c3cc46543h CASPubMedWeb of Science®Google Scholar Ikeda , S. , Hattori , A. , Ito , K. , and Noda , H. ( 1999 ). Electrochem. 67 : 27 – 33 . 10.5796/electrochemistry.67.27 CASWeb of Science®Google Scholar (a) Nguyen , D.L.T. , Lee , C.W. , Na , J. et al. ( 2020 ). ACS Catal. 10 : 3222 – 3231 ; 10.1021/acscatal.9b05096 CASWeb of Science®Google Scholar (b) Zhao , M. , Gu , Y. , Chen , P. et al. ( 2019 ). J. Mater. Chem. A 7 : 9316 – 9323 . 10.1039/C9TA00562E CASWeb of Science®Google Scholar (a) Quan , F. , Zhong , D. , Song , H. et al. ( 2015 ). J. Mater. Chem. A 3 : 16409 – 16413 . 10.1039/C5TA04102C CASWeb of Science®Google Scholar (b) Won , D.H. , Shin , H. , Koh , J. et al. ( 2016 ). Angew. Chem. Int. Ed. 55 : 9297 – 9300 . 10.1002/anie.201602888 CASPubMedWeb of Science®Google Scholar (c) Zhao , M. , Tang , H. , Yang , Q. et al. ( 2020 ). Mater. Inter. 12 : 4565 – 4571 . 10.1021/acsami.9b22811 CASGoogle Scholar Hori , Y. , Kikuchi , K. , and Suzuki , S. ( 1985 ). Chem. Lett. 14 : 1695 – 1698 . 10.1246/cl.1985.1695 Web of Science®Google Scholar (a) Nørskov , J.K. , Bligaard , T. , Logadottir , A. et al. ( 2005 ). J. Electrochem. Soc. 152 : J23 . 10.1149/1.1856988 CASWeb of Science®Google Scholar (b) Vasiliev , Y.B. , Bagotzky , V. , and Osetrova , N. ( 1985 ). J. Electroanal. Chem 189 : 271 – 294 . 10.1016/0368-1874(85)80073-3 Google Scholar (c) Trasatti , S. ( 1972 ). J. Electroanaly. Chem. Interfacial Electrochem. 39 : 163 – 184 . 10.1016/S0022-0728(72)80485-6 CASWeb of Science®Google Scholar (a) Wakerley , D. , Lamaison , S. , Ozanam , F. et al. ( 2019 ). Nat. Mater. 18 : 1222 – 1227 . 10.1038/s41563-019-0445-x CASPubMedWeb of Science®Google Scholar (b) Ren , D. , Fong , J. , and Yeo , B.S. ( 2018 ). Nat. Commun. 9 : 925 . 10.1038/s41467-018-03286-w PubMedWeb of Science®Google Scholar (a) Cook , R.L. , MacDuff , R.C. , and Sammells , A.F. ( 1987 ). J. Electrochem. Soc. 134 : 1873 – 1874 . 10.1149/1.2100776 CASWeb of Science®Google Scholar (b) DeWulf , D.W. , Jin , T. , and Bard , A.J. ( 1989 ). J. Electrochem. Soc. 136 : 1686 – 1691 . 10.1149/1.2096993 CASWeb of Science®Google Scholar (c) Hara , K. , Tsuneto , A. , Kudo , A. , and Sakata , T. ( 1994 ). J. Electrochem. Soc. 141 : 2097 – 2103 . 10.1149/1.2055067 CASWeb of Science®Google Scholar (d) Hori , Y. , Koga , O. , Yamazaki , H. , and Matsuo , T. ( 1995 ). Electrochim. Acta 40 : 2617 – 2622 . 10.1016/0013-4686(95)00239-B CASWeb of Science®Google Scholar (a) Jiang , K. , Sandberg , R.B. , Akey , A.J. et al. ( 2018 ). Nature Catal. 1 : 111 – 119 . 10.1038/s41929-017-0009-x CASWeb of Science®Google Scholar (b) Osowiecki , W.T. , Nussbaum , J.J. , Kamat , G.A. et al. ( 2019 ). Energy Mater. 2 : 7744 – 7749 . CASGoogle Scholar (c) Li , Y. , Kim , D. , Louisia , S. et al. ( 2020 ). Proc. Natl. Acad. Sci. U. S. A. 117 : 9194 – 9201 . 10.1073/pnas.1918602117 CASPubMedWeb of Science®Google Scholar (d) Garza , A.J. , Bell , A.T. , and Head-Gordon , M. ( 2018 ). ACS Catal. 8 : 1490 – 1499 . 10.1021/acscatal.7b03477 CASWeb of Science®Google Scholar (e) Todorova , T.K. , Schreiber , M.W. , and Fontecave , M. ( 2020 ). ACS Catal. 10 : 1754 – 1768 . 10.1021/acscatal.9b04746 CASWeb of Science®Google Scholar Tang , W. , Peterson , A.A. , Varela , A.S. et al. ( 2012 ). Phys. Chem. Chem. Phys. 14 : 76 – 81 . 10.1039/C1CP22700A CASPubMedWeb of Science®Google Scholar (a) Wang , Y. , Chen , Z. , Han , P. et al. ( 2018 ). ACS Catal. 8 : 7113 – 7119 . 10.1021/acscatal.8b01014 CASWeb of Science®Google Scholar (b) Guan , A. , Chen , Z. , Quan , Y. et al. ( 2020 ). ACS Energy Lett. 5 : 1044 – 1053 . 10.1021/acsenergylett.0c00018 CASWeb of Science®Google Scholar Varandili , S.B. , Huang , J. , Oveisi , E. et al. ( 2019 ). ACS Catal. 9 : 5035 – 5046 . 10.1021/acscatal.9b00010 CASWeb of Science®Google Scholar Chen , S. , Su , Y. , Deng , P. et al. ( 2020 ). ACS Catal. 10 : 4640 – 4646 . 10.1021/acscatal.0c00847 CASWeb of Science®Google Scholar (a) Liang , Z.-Q. , Zhuang , T.-T. , Seifitokaldani , A. et al. ( 2018 ). Nat. Commun. 9 : 3828 . 10.1038/s41467-018-06311-0 PubMedWeb of Science®Google Scholar (b) Yin , Z. , Yu , C. , Zhao , Z. et al. ( 2019 ). Nano Lett. 19 : 8658 – 8663 . 10.1021/acs.nanolett.9b03324 CASPubMedWeb of Science®Google Scholar Torelli , D.A. , Francis , S.A. , Crompton , J.C. et al. ( 2016 ). ACS Catal. 6 : 2100 – 2104 . 10.1021/acscatal.5b02888 CASWeb of Science®Google Scholar (a) Zhao , Z. , Peng , X. , Liu , X. et al. ( 2017 ). J. Mater. Chem. A 5 : 20239 – 20243 . 10.1039/C7TA05507B CASWeb of Science®Google Scholar (b) Liu , X. , Yang , H. , He , J. et al. ( 2018 ). Small 14 : 1704049 . 10.1002/smll.201704049 Web of Science®Google Scholar Yang , X.-F. , Wang , A. , Qiao , B. et al. ( 2013 ). Acc. Chem. Res. 46 : 1740 – 1748 . 10.1021/ar300361m CASPubMedWeb of Science®Google Scholar Varela , A.S. , Ranjbar Sahraie , N. , Steinberg , J. et al. ( 2015 ). Angew. Chem. Int. Ed. 54 : 10758 – 10762 . 10.1002/anie.201502099 CASPubMedWeb of Science®Google Scholar Huan , T.N. , Ranjbar , N. , Rousse , G. et al. ( 2017 ). ACS Catal. 7 : 1520 – 1525 . 10.1021/acscatal.6b03353 CASWeb of Science®Google Scholar Varela , A.S. , Ju , W. , Bagger , A. et al. ( 2019 ). ACS Catal. 9 : 7270 – 7284 . 10.1021/acscatal.9b01405 CASWeb of Science®Google Scholar (a) Kornienko , N. , Zhao , Y. , Kley , C.S. et al. ( 2015 ). J. Am. Chem. Soc. 137 : 14129 – 14135 . 10.1021/jacs.5b08212 CASPubMedWeb of Science®Google Scholar (b) Zhou , Y. , Che , F. , Liu , M. et al. ( 2018 ). Nature Chemistry 10 : 974 – 980 . 10.1038/s41557-018-0092-x CASPubMedWeb of Science®Google Scholar (c) Di , J. , Chen , C. , Yang , S.-Z. et al. ( 2019 ). Nat. Commun. 10 : 2840 . 10.1038/s41467-019-10392-w PubMedWeb of Science®Google Scholar (d) Zheng , T. , Jiang , K. , and Wang , H. ( 2018 ). Adv. Mater. 30 : 1802066 . 10.1002/adma.201802066 PubMedWeb of Science®Google Scholar Guo , Z. , Cheng , S. , Cometto , C. et al. ( 2016 ). J. Am. Chem. Soc. 138 : 9413 – 9416 . 10.1021/jacs.6b06002 CASPubMedWeb of Science®Google Scholar Wang , X. , Chen , Z. , Zhao , X. et al. ( 2018 ). Angew. Chem. Int. Ed. 57 : 1944 – 1948 . 10.1002/anie.201712451 CASPubMedWeb of Science®Google Scholar Pan , Y. , Lin , R. , Chen , Y. et al. ( 2018 ). J. Am. Chem. Soc. 140 : 4218 – 4221 . 10.1021/jacs.8b00814 CASPubMedWeb of Science®Google Scholar Li , X. , Bi , W. , Chen , M. et al. ( 2017 ). J. Am. Chem. Soc. 139 : 14889 – 14892 . 10.1021/jacs.7b09074 CASPubMedWeb of Science®Google Scholar Jiang , K. , Siahrostami , S. , Zheng , T. et al. ( 2018 ). Energy Environ. Sci. 11 : 893 – 903 . 10.1039/C7EE03245E CASWeb of Science®Google Scholar (a) Cheng , T. , Xiao , H. , and Goddard , W.A. ( 2017 ). J. Am. Chem. Soc. 139 : 11642 – 11645 . 10.1021/jacs.7b03300 CASPubMedWeb of Science®Google Scholar (b) Li , J. , Wang , Z. , McCallum , C. et al. ( 2019 ). Nature Catal. 2 : 1124 – 1131 . 10.1038/s41929-019-0380-x CASWeb of Science®Google Scholar (c) Liu , X. , Schlexer , P. , Xiao , J. et al. ( 2019 ). Nat. Commun. 10 : 32 . 10.1038/s41467-018-07970-9 CASPubMedWeb of Science®Google Scholar Zheng , W. , Yang , J. , Chen , H. et al. ( 2020 ). Adv. Funct. Mater. 30 : 1907658 . 10.1002/adfm.201907658 CASWeb of Science®Google Scholar Jiao , Y. , Zheng , Y. , Chen , P. et al. ( 2017 ). J. Am. Chem. Soc. 139 : 18093 – 18100 . 10.1021/jacs.7b10817 CASPubMedWeb of Science®Google Scholar Zu , X. , Li , X. , Liu , W. et al. ( 2019 ). Adv. Mater. 31 : 1808135 . 10.1002/adma.201808135 PubMedWeb of Science®Google Scholar Ni , W. , Gao , Y. , Lin , Y. et al. ( 2021 ). ACS Catal. 11 : 5212 – 5221 . 10.1021/acscatal.0c05514 CASWeb of Science®Google Scholar (a) Huang , P. , Cheng , M. , Zhang , H. et al. ( 2019 ). Nano Energy 61 : 428 – 434 . 10.1016/j.nanoen.2019.05.003 CASWeb of Science®Google Scholar (b) Yang , F. , Song , P. , Liu , X. et al. ( 2018 ). Angew. Chem. Int. Ed. 57 : 12303 – 12307 . 10.1002/anie.201805871 CASPubMedWeb of Science®Google Scholar Cheng , M.-J. , Clark , E.L. , Pham , H.H. et al. ( 2016 ). ACS Catal. 6 : 7769 – 7777 . 10.1021/acscatal.6b01393 CASWeb of Science®Google Scholar (a) Duchesne , P.N. , Li , Z.Y. , Deming , C.P. et al. ( 2018 ). Nat. Mater. 17 : 1033 – 1039 . 10.1038/s41563-018-0167-5 CASPubMedWeb of Science®Google Scholar (b) Greiner , M.T. , Jones , T.E. , Beeg , S. et al. ( 2018 ). Nat. Chem. ( 10 ): 1008 – 1015 . 10.1038/s41557-018-0125-5 PubMedGoogle Scholar Wang , Y. , Cao , L. , Libretto , N.J. et al. ( 2019 ). J. Am. Chem. Soc. 141 : 16635 – 16642 . 10.1021/jacs.9b05766 CASPubMedWeb of Science®Google Scholar Jiao , J. , Lin , R. , Liu , S. et al. ( 2019 ). Nature Chem. 11 : 222 – 228 . 10.1038/s41557-018-0201-x CASPubMedWeb of Science®Google Scholar Nguyen , T.N. and Dinh , C.-T. ( 2020 ). Chem. Soc. Rev. 49 : 7488 – 7504 . 10.1039/D0CS00230E CASPubMedWeb of Science®Google Scholar (a) Li , L. , Ozden , A. , Guo , S. et al. ( 2021 ). Nat. Commun. 12 : 5223 . 10.1038/s41467-021-25573-9 CASPubMedWeb of Science®Google Scholar (b) Dinh , C.-T. , García de Arquer , F.P. , Sinton , D. , and Sargent , E.H. ( 2018 ). ACS Energy Lett. 3 : 2835 – 2840 . 10.1021/acsenergylett.8b01734 CASWeb of Science®Google Scholar Weng , L.-C. , Bell , A.T. , and Weber , A.Z. ( 2018 ). Phys. Chem. Chem. Phys. 20 : 16973 – 16984 . 10.1039/C8CP01319E CASPubMedWeb of Science®Google Scholar Yang , K. , Kas , R. , Smith , W.A. , and Burdyny , T. ( 2021 ). ACS Energy Lett. 6 : 33 – 40 . 10.1021/acsenergylett.0c02184 CASWeb of Science®Google Scholar Li , Y.C. , Wang , Z. , Yuan , T. et al. ( 2019 ). J. Am. Chem. Soc. 141 : 8584 – 8591 . 10.1021/jacs.9b02945 CASPubMedWeb of Science®Google Scholar Tan , Y.C. , Lee , K.B. , Song , H. , and Oh , J. ( 2020 ). Joule 4 : 1104 – 1120 . 10.1016/j.joule.2020.03.013 CASWeb of Science®Google Scholar Kim , D. , Kley , C.S. , Li , Y. , and Yang , P. ( 2017 ). Proc. Natl. Acad. Sci. U. S. A. 114 : 10560 . 10.1073/pnas.1711493114 CASPubMedWeb of Science®Google Scholar Water Photo‐ and Electro‐Catalysis: Mechanisms, Materials, Devices, and Systems ReferencesRelatedInformation