Finding new analgesics: Computational pharmacology faces drug discovery challenges

药物发现 鉴定(生物学) 计算模型 机制(生物学) 计算机科学 止痛药 系统药理学 计算生物学 医学 数据科学 神经科学 药品 生物信息学 药理学 心理学 人工智能 生物 哲学 植物 认识论
作者
Ahmed Barakat,Gordon Munro,Anne‐Marie Heegaard
出处
期刊:Biochemical Pharmacology [Elsevier BV]
卷期号:222: 116091-116091 被引量:2
标识
DOI:10.1016/j.bcp.2024.116091
摘要

Despite the worldwide prevalence and huge burden of pain, pain is an undertreated phenomenon. Currently used analgesics have several limitations regarding their efficacy and safety. The discovery of analgesics possessing a novel mechanism of action has faced multiple challenges, including a limited understanding of biological processes underpinning pain and analgesia and poor animal-to-human translation. Computational pharmacology is currently employed to face these challenges. In this review, we discuss the theory, methods, and applications of computational pharmacology in pain research. Computational pharmacology encompasses a wide variety of theoretical concepts and practical methodological approaches, with the overall aim of gaining biological insight through data acquisition and analysis. Data are acquired from patients or animal models with pain or analgesic treatment, at different levels of biological organization (molecular, cellular, physiological, and behavioral). Distinct methodological algorithms can then be used to analyze and integrate data. This helps to facilitate the identification of biological molecules and processes associated with pain phenotype, build quantitative models of pain signaling, and extract translatable features between humans and animals. However, computational pharmacology has several limitations, and its predictions can provide false positive and negative findings. Therefore, computational predictions are required to be validated experimentally before drawing solid conclusions. In this review, we discuss several case study examples of combining and integrating computational tools with experimental pain research tools to meet drug discovery challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
舒远发布了新的文献求助30
1秒前
风中天宇发布了新的文献求助10
3秒前
乐乱完成签到 ,获得积分10
3秒前
科研通AI5应助ponytail采纳,获得10
3秒前
妮妮发布了新的文献求助10
3秒前
李健的小迷弟应助嘿嘿嘿采纳,获得10
4秒前
Somnolence咩完成签到,获得积分10
4秒前
Mark_He发布了新的文献求助10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
伶俐千柳应助科研通管家采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
李健的小迷弟应助lxz采纳,获得10
7秒前
斩荆披棘完成签到,获得积分10
9秒前
kido完成签到,获得积分10
11秒前
搞怪尔芙发布了新的文献求助10
11秒前
深情安青应助平安如意采纳,获得10
13秒前
jiujiu完成签到,获得积分10
16秒前
17秒前
Voskov发布了新的文献求助10
18秒前
合适的涫发布了新的文献求助10
24秒前
沅芷完成签到,获得积分10
24秒前
科研通AI5应助品123采纳,获得10
24秒前
25秒前
Owen应助无情人杰采纳,获得10
26秒前
深情安青应助外向访卉采纳,获得10
27秒前
wanci应助妮妮采纳,获得10
28秒前
28秒前
kido发布了新的文献求助10
30秒前
烟花应助Jolin采纳,获得10
31秒前
半。。发布了新的文献求助10
33秒前
34秒前
Songjia123完成签到 ,获得积分10
35秒前
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784481
求助须知:如何正确求助?哪些是违规求助? 3329665
关于积分的说明 10242830
捐赠科研通 3045021
什么是DOI,文献DOI怎么找? 1671569
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391