Online monitoring of air quality using PCA-based sequential learning

计算机科学 空气质量指数 在线学习 人工智能 地理 万维网 气象学
作者
Xiulin Xie,Nicole Qian,Peihua Qiu
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:18 (1) 被引量:3
标识
DOI:10.1214/23-aoas1803
摘要

Air pollution surveillance is critically important for public health. One air pollutant, ozone, is extremely challenging to analyze properly, as it is a secondary pollutant caused by complex chemical reactions in the air and does not emit directly into the atmosphere. Numerous environmental studies confirm that ozone concentration levels are associated with meteorological conditions, and long-term exposure to high ozone concentration levels is associated with the incidence of many diseases, including asthma, respiratory, and cardiovascular diseases. Thus, it is important to develop an air pollution surveillance system to collect both air pollution and meteorological data and monitor the data continuously over time. To this end, statistical process control (SPC) charts provide a major statistical tool. But most existing SPC charts are designed for cases when the in-control (IC) process observations at different times are assumed to be independent and identically distributed. The air pollution and meteorological data would not satisfy these conditions due to serial data correlation, high dimensionality, seasonality, and other complex data structure. Motivated by an application to monitor the ground ozone concentration levels in the Houston–Galveston–Brazoria (HGB) area, we developed a new process monitoring method using principal component analysis and sequential learning. The new method can accommodate high dimensionality, time-varying IC process distribution, serial data correlation, and nonparametric data distribution. It is shown to be a reliable analytic tool for online monitoring of air quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟雨完成签到,获得积分10
1秒前
齐嘉懿发布了新的文献求助10
1秒前
自由自在发布了新的文献求助10
2秒前
要开心完成签到 ,获得积分10
2秒前
自信的秋灵完成签到,获得积分20
3秒前
嗯哼完成签到 ,获得积分10
4秒前
4秒前
4秒前
YK发布了新的文献求助10
5秒前
bc应助要减肥含灵采纳,获得20
6秒前
良仑完成签到,获得积分10
9秒前
潘多拉发布了新的文献求助10
9秒前
10秒前
10秒前
AJS发布了新的文献求助10
10秒前
Chivalry0219发布了新的文献求助10
11秒前
成就大山完成签到,获得积分10
13秒前
15秒前
wen发布了新的文献求助10
15秒前
¥#¥-11完成签到,获得积分10
15秒前
自由的尔蓉完成签到 ,获得积分10
16秒前
Danny完成签到,获得积分10
16秒前
桐桐应助li采纳,获得10
17秒前
健壮的紫菱完成签到,获得积分10
18秒前
96发布了新的文献求助100
18秒前
Roach完成签到,获得积分10
18秒前
22秒前
22秒前
深情安青应助mumu采纳,获得10
24秒前
隐形曼青应助linlin采纳,获得10
24秒前
27秒前
tw0125发布了新的文献求助10
27秒前
自由自在完成签到,获得积分10
28秒前
脑洞疼应助晚云烟月采纳,获得10
29秒前
31秒前
31秒前
Orange应助qq采纳,获得10
32秒前
32秒前
AJS完成签到,获得积分10
33秒前
情怀应助wp采纳,获得10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790999
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276539
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761056