ML-FGAT: Identification of multi-label protein subcellular localization by interpretable graph attention networks and feature-generative adversarial networks

可解释性 计算机科学 人工智能 机器学习 图形 稳健性(进化) 维数之咒 生成语法 蛋白质测序 数据挖掘 模式识别(心理学) 理论计算机科学 基因 肽序列 生物化学 化学
作者
Congjing Wang,Yifei Wang,Pengju Ding,Shan Li,Xu Yu,Bin Yu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 107944-107944 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.107944
摘要

The prediction of multi-label protein subcellular localization (SCL) is a pivotal area in bioinformatics research. Recent advancements in protein structure research have facilitated the application of graph neural networks. This paper introduces a novel approach termed ML-FGAT. The approach begins by extracting node information of proteins from sequence data, physical-chemical properties, evolutionary insights, and structural details. Subsequently, various evolutionary techniques are integrated to consolidate multi-view information. A linear discriminant analysis framework, grounded on entropy weight, is then employed to reduce the dimensionality of the merged features. To enhance the robustness of the model, the training dataset is augmented using feature-generative adversarial networks. For the primary prediction step, graph attention networks are employed to determine multi-label protein SCL, leveraging both node and neighboring information. The interpretability is enhanced by analyzing the attention weight parameters. The training is based on the Gram-positive bacteria dataset, while validation employs newly constructed datasets: human, virus, Gram-negative bacteria, plant, and SARS-CoV-2. Following a leave-one-out cross-validation procedure, ML-FGAT demonstrates noteworthy superiority in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
现实的谷南完成签到 ,获得积分10
1秒前
AURORA发布了新的文献求助10
1秒前
fairy完成签到,获得积分10
2秒前
突突突发布了新的文献求助10
3秒前
于雷是我发布了新的文献求助10
3秒前
木子发布了新的文献求助10
3秒前
快来吃甜瓜完成签到 ,获得积分10
3秒前
3秒前
CC1219应助Tony12采纳,获得10
4秒前
Lucas应助dong采纳,获得10
5秒前
5秒前
ndrise完成签到,获得积分10
5秒前
Lucas应助AURORA采纳,获得10
7秒前
YananQiao发布了新的文献求助30
8秒前
9秒前
ndrise发布了新的文献求助10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
852应助科研通管家采纳,获得10
11秒前
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
dong完成签到,获得积分10
12秒前
hob发布了新的文献求助10
13秒前
赘婿应助单纯的雅香采纳,获得10
13秒前
学术蟑螂发布了新的文献求助10
13秒前
科研通AI5应助98采纳,获得10
14秒前
研友_nE1dDn完成签到 ,获得积分10
15秒前
18秒前
木子完成签到,获得积分10
18秒前
Eastonlyzhang发布了新的文献求助10
21秒前
于雷是我发布了新的文献求助10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803841
求助须知:如何正确求助?哪些是违规求助? 3348632
关于积分的说明 10339665
捐赠科研通 3064787
什么是DOI,文献DOI怎么找? 1682776
邀请新用户注册赠送积分活动 808429
科研通“疑难数据库(出版商)”最低求助积分说明 764096