EEG emotion recognition based on Ordinary Differential Equation Graph Convolutional Networks and Dynamic Time Wrapping

邻接矩阵 计算机科学 颂歌 模式识别(心理学) 平滑的 欧几里德距离 图形 人工智能 脑电图 邻接表 算法 数学 理论计算机科学 计算机视觉 应用数学 精神科 心理学
作者
Yiyuan Chen,Xiaodong Xu,Xiaoyi Bian,Xiaowei Qin
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111181-111181 被引量:7
标识
DOI:10.1016/j.asoc.2023.111181
摘要

Graph Convolutional Network (GCN) has been extensively utilized to extract relations among electroencephalography (EEG) electrode channels for its strong ability to handle non-Euclidean data. However, GCN still has some issues when it comes to extracting features from EEG signals: (1) GCN with more layers may experience over-smoothing, restricting its ability to mine longer dependency relations. (2) At the moment, most GCNs used to process EEG signals construct adjacency matrices by Euclidean distance, only considering the correlations on the feature domain while ignoring changes of signals over the entire time window. To address the issues above, we introduce an Ordinary Differential Equation (ODE) based GCN, which can perfectly eliminate the over-smoothing problem of the traditional GCN. Besides, we also propose a method based on Dynamic Time Wrapping (DTW) algorithm to construct an adjacency matrix in the time domain. To handle adjacency matrices calculated by Euclidean distance and DTW distance respectively, we apply a temporal–spatial model composed of two parallel modules each containing an ODE-based GCN and Long short-term memory neural networks (LSTM) network in turn. We conducted experiments on three public datasets. The results show that our methods have achieved an improvement of 2.19%/2.77%/2.13%/2.01% on Arousal/Valence/Dominance/Liking on DEAP dataset, 1.43% on SEED dataset and 3.06%/3.27% on Arousal/Valence on DREAMER dataset compared with state-of-the-art (SOTA) baseline methods. It demonstrates that our method can effectively approve the performance to handle the relations between EEG channels. The premise of the ODE-based GCN is that signal changes of all EEG channels should be continuous rather than abrupt. We believe that it conforms to the EEG mode, as it is activated by the same emotion stimulation while being collected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
领导范儿应助小全采纳,获得30
2秒前
2秒前
佳足完成签到,获得积分10
2秒前
3秒前
5秒前
飞云发布了新的文献求助10
6秒前
天天快乐应助美丽的夏柳采纳,获得10
7秒前
张继妖发布了新的文献求助10
8秒前
坦率的怜容完成签到,获得积分10
8秒前
Cc完成签到 ,获得积分10
10秒前
10秒前
12秒前
冷艳哈密瓜完成签到 ,获得积分10
14秒前
Archy发布了新的文献求助10
14秒前
16秒前
吃饱喝足就睡觉完成签到 ,获得积分10
16秒前
karna发布了新的文献求助10
18秒前
Milktea123发布了新的文献求助10
21秒前
lulu完成签到,获得积分10
21秒前
22秒前
李健的小迷弟应助九儿采纳,获得10
22秒前
ding应助好好好采纳,获得10
24秒前
小木虫启航完成签到,获得积分10
27秒前
xiying完成签到 ,获得积分10
28秒前
小全发布了新的文献求助30
28秒前
太叔半雪完成签到,获得积分10
29秒前
29秒前
30秒前
30秒前
32秒前
打打应助CYY采纳,获得10
33秒前
MinQi发布了新的文献求助30
34秒前
丘比特应助翊然甜周采纳,获得10
34秒前
zho发布了新的文献求助10
35秒前
HJJHJH发布了新的文献求助20
36秒前
赵赵赵发布了新的文献求助10
37秒前
38秒前
赘婿应助赵赵赵采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648